...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >A Critical Validation of Density Functional and Coupled-Cluster Approaches for the Calculation of EPR Hyperfine Coupling Constants in Transition Metal Complexes
【24h】

A Critical Validation of Density Functional and Coupled-Cluster Approaches for the Calculation of EPR Hyperfine Coupling Constants in Transition Metal Complexes

机译:密度泛函和耦合簇方法在过渡金属配合物中EPR超细偶合常数计算中的关键验证

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of various density functional approaches for the calculation of electron paramagnetic resonance (EPR) hyperfine coupling constants in transition metal complexes has been evaluated critically by comparison with experimental data and high-level coupled-cluster results for 21 systems, representing a large variety of different electronic situations. While both gradient-corrected and hybrid functionals allow the calculation of isotropic metal hyperfine coupling constants to within ca. 10-15% for the less critical cases (e.g., ScO, TiN, TiO, VO, MnO, MnF), none of the functionals investigated performs well for all complexes. Gradient-corrected functionals tend to underestimate the important core-shell spin polarization. While this may be improved by exact-exchange mixing in some cases, the accompanying spin contamination may even lead to a deterioration of the results for other complexes. We also identify cases, where essentially none of the functionals performs satisfactorily. In the absence of a "universal functional", the functionals to be applied to the calculation of hyperfine couplings in certain areas of transition metal chemistry have to be carefully selected. Desirable, improved functionals should provide sufficiently large spin polarization for core and valence shells without exaggerating it for the latter (and thus introducing spin contamination). Coupling anisotropies and coupling constants for ligand nuclei are also discussed. The computationally much more demanding coupled cluster (CCSD and CCSD(T)) methods, which have been applied to a subset of complexes, show good performance, even when a UHF reference wave function is moderately spin-contaminated.
机译:通过与21个系统的实验数据和高水平耦合簇结果进行比较,对用于过渡金属配合物中电子顺磁共振(EPR)超精细耦合常数计算的各种密度泛函方法的性能进行了严格评估,代表了21种系统的多样性。不同的电子情况。虽然梯度校正和混合函数都允许将各向同性金属的超精细耦合常数计算为大约1到2。对于不太关键的情况(例如ScO,TiN,TiO,VO,MnO,MnF)为10%至15%的情况,所研究的功能对所有配合物均不能很好地发挥作用。梯度校正的函数倾向​​于低估重要的核-壳自旋极化。尽管在某些情况下可以通过精确交换混合来改善此状况,但伴随的自旋污染甚至可能导致其他配合物的结果变差。我们还确定了基本上没有一个功能令人满意地执行的情况。在没有“通用功能”的情况下,必须谨慎选择在过渡金属化学的某些领域中用于计算超精细偶联的功能。期望的,改进的功能性应当为核壳和价壳提供足够大的自旋极化,而不会夸大后者(并因此引入自旋污染)。还讨论了配体核的耦合各向异性和耦合常数。即使在UHF参考波函数受到中度自旋污染的情况下,已经应用于复杂子集的计算上要求更高的耦合簇(CCSD和CCSD(T))方法显示出良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号