...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Thermochemistry, Reaction Paths, and Kinetics on the Hydroperoxy-Ethyl Radical Reaction with O_2: New Chain Branching Reactions in Hydrocarbon Oxidation
【24h】

Thermochemistry, Reaction Paths, and Kinetics on the Hydroperoxy-Ethyl Radical Reaction with O_2: New Chain Branching Reactions in Hydrocarbon Oxidation

机译:O_2与氢过氧乙基自由基反应的热化学,反应路径和动力学:烃氧化中的新链支化反应

获取原文
获取原文并翻译 | 示例
           

摘要

Ab initio and density functional calculations are performed to determine thermochemical and kinetic parameters in analysis of the 2 hydroperoxy-ethyl radical association with O_2. The system serves as an initial model for O_2 association with higher molecular weight alkyl-hydroperoxide radicals and is an important component in the well-studied ethyl radical plus O_2 reaction system. The CBS-1//B2LYP/6-31G(d,p) and G3(MP2) composite methods are utilized to calculate energies. The well depth is determined as 35 kcal/mol and transition state results show two low energy paths (barriers below the entrance channel) for reaction to new products: (i) a HO_2 molecular elimination and (ii) a hydrogen shift path. Intramolecular hydrogen transfer (five-member ring) leads to 2 hydroperoxide acetadehyde + OH, where the barrier is ca. 7 kcal/mol lower than previously estimated. The HOOCH_2CH(=O) formed here is chemically activated and a significant fraction dissociates to OH + formyl-methoxy radical, before stabilization. The barrier for hydrogen transfer is several kcal/mole lower than the corresponding reaction in a conventional hydrocarbon for this five-member ring transition state because the weak C-H bond on the hydroperoxide carbon. The second path is unimolecular HO_2 elimination leading to a vinyl hydroperoxide + HO_2. The vinyl hydroperoxide has a weak (22.5 kcal/mol) CH_2=CHO-OH bond and rapidly dissociates to formyl methyl plus OH radicals; a second low energy chain branching path in low-temperature HC oxidation. Kinetic analysis with falloff on chemical activation and unimoleculardissociation, illustrate that both low energy paths are competing. Results also show significant formation of a diradical, ~·OCH_2CH_2OO~· + OH, an additional new path to chain branching, which results from the chemical activation reaction. The HO_2 molecular elimination plus vinyl hydroperoxide dominates the H transfer by a factor of 1.8 at low temperatures, a result of its small entropy advantage. At high temperatures, dissociation to the higher energy, but loose transition state, hydroperoxide ethyl radical + O_2 (back to reactants) is the dominant path.
机译:进行从头算和密度泛函计算,以确定与O_2的2个氢过氧-乙基自由基缔合的热化学和动力学参数。该系统用作O_2与较高分子量的烷基氢过氧化物自由基缔合的初始模型,并且是经过充分研究的乙基自由基与O_2反应体系的重要组成部分。 CBS-1 // B2LYP / 6-31G(d,p)和G3(MP2)复合方法用于计算能量。井深确定为35 kcal / mol,过渡态结果显示出两个低能路径(进入通道下方的势垒),用于对新产品的反应:(i)HO_2分子消除和(ii)氢转移路径。分子内氢转移(五元环)导致2的氢过氧化物乙醛+ OH,其势垒为ca。比以前的估计值低7 kcal / mol。在稳定之前,此处形成的HOOCH_2CH(= O)经过化学活化,大部分分解为OH +甲酰基-甲氧基。对于该五元环过渡态,氢转移的势垒比常规烃中的相应反应低几千卡/摩尔,因为氢过氧化物碳上的弱C-H键。第二个途径是单分子HO_2的消除,导致氢过氧化物乙烯基+ HO_2。氢过氧化物乙烯基具有弱的(22.5 kcal / mol)CH_2 = CHO-OH键并迅速解离为甲酰基甲基和OH自由基;低温HC氧化中的第二条低能链支化路径。动力学分析以及化学活化和单分子解离的衰减表明,这两种低能途径都在竞争。结果还表明,显着形成双自由基,〜·OCH_2CH_2OO〜·+ OH,这是化学活化反应产生的另一条新的支链途径。由于其小的熵优势,HO_2分子消除加上氢过氧化乙烯基在低温下以1.8的比例控制着H的传递。在高温下,离解为更高的能量,但过渡态松散,氢过氧化物乙基+ O_2(回到反应物)是主要途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号