...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse.
【24h】

Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse.

机译:小脑运动学习的模拟:苔藓纤维对深核突触可塑性的计算分析。

获取原文
获取原文并翻译 | 示例
           

摘要

We question the widely accepted assumption that a molecular mechanism for long-term expression of synaptic plasticity is sufficient to explain the persistence of memories. Instead, we show that learning and memory require that these cellular mechanisms be correctly integrated within the architecture of the neural circuit. To illustrate this general conclusion, our studies are based on the well characterized synaptic organization of the cerebellum and its relationship to a simple form of motor learning. Using computer simulations of cerebellar-mediated eyelid conditioning, we examine the ability of three forms of plasticity at mossy fiber synapses in the cerebellar nucleus to contribute to learning and memory storage. Results suggest that when the simulation is exposed to reasonable patterns of "background" cerebellar activity, only one of these three rules allows for the retention of memories. When plasticity at the mossy fiber synapse is controlled by nucleus or climbing fiber activity, the circuit is unable to retain memories because of interactions within the network that produce spontaneous drift of synaptic strength. In contrast, a plasticity rule controlled by the activity of the Purkinje cell allows for a memory trace that is resistant to ongoing activity in the circuit. These results suggest specific constraints for theories of cerebellar motor learning and have general implications regarding the mechanisms that may contribute to the persistence of memories.
机译:我们质疑被广泛接受的假设,即长期表达突触可塑性的分子机制足以解释记忆的持久性。取而代之的是,我们表明学习和记忆要求这些细胞机制正确整合在神经回路的架构内。为了说明这一一般性结论,我们的研究基于小脑的突触组织及其与简单运动学习形式的关系。使用小脑介导的眼睑调节的计算机模拟,我们检查了小脑核中苔藓纤维突触的三种可塑性形式有助于学习和记忆存储的能力。结果表明,当模拟暴露于“背景”小脑活动的合理模式时,这三个规则中只有一个可以保留记忆。当长满苔藓的纤维突触的可塑性受细胞核或攀爬纤维活动的控制时,由于网络内部的相互作用会导致突触强度的自发漂移,因此电路无法保留记忆。相比之下,由浦肯野细胞活性控制的可塑性规则允许记忆迹线抵抗电路中正在进行的活动。这些结果表明对小脑运动学习理论的特定限制,并对可能有助于记忆持久性的机制具有普遍意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号