首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
【24h】

Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.

机译:水ech心脏中间神经元的爆发:细胞自主和基于网络的机制。

获取原文
获取原文并翻译 | 示例
           

摘要

Rhythmic activity within the heartbeat pattern generator of the medicinal leech is based on the alternating bursting of mutually inhibitory pairs of oscillator heart interneurons (half-center oscillators). Bicuculline methiodide has been shown to block mutual inhibition between these interneurons and to cause them to spike tonically while recorded intracellularly (Schmidt and Calabrese, 1992). Using extracellular recording techniques, we show here that oscillator and premotor heart interneurons continue to burst when pharmacologically isolated with bicuculline, although the bursting is not robust in some preparations. We propose that a nonspecific leak current introduced by the intracellular microelectrode suppresses endogenous bursting activity to account for the discrepancy with results using intracellular recording. A two-parameter bifurcation diagram (E(leak) vs g(leak)) of a mathematical model of a single heart interneuron shows a narrow stripe of parameter values where bursting occurs, separatinglarge zones of tonic spiking and silence. A similar analysis performed for a half-center oscillator model outlined a much larger area of bursting. Bursting in the half-center oscillator model is also less sensitive to variation in the maximal conductances of voltage-gated currents than in the single-neuron model. Thus, in addition to ensuring appropriate bursting characteristics such as period, phase, and duty cycles, the half-center configuration enhances oscillation robustness, making them less susceptible to random or imposed changes in membrane parameters. Endogenous bursting, in turn, ensures appropriate bursting if the strength of mutual inhibition is weakened and limits the minimum period of the half-center oscillator to a period near that of the single neuron.
机译:药用水ech心跳模式发生器内的节律活动是基于相互抑制的振荡器心脏中间神经元(半中心振荡器)对的交替爆发。甲硫双环已被证明可以阻断这些中间神经元之间的相互抑制,并导致它们在细胞内记录时呈音调突增(Schmidt and Calabrese,1992)。使用细胞外记录技术,我们在这里显示出,当与小分子药理学分离时,振荡器和运动前心脏中枢神经继续爆裂,尽管在某些制剂中爆裂并不牢固。我们建议由细胞内微电极引入的非特异性泄漏电流抑制内源性爆发活动,以解释与使用细胞内记录的结果之间的差异。单心脏中间神经元的数学模型的两参数分叉图(E(泄漏)与g(泄漏))显示出出现爆裂的狭窄参数值条带,分隔了大范围的强音尖峰和静默区。对半中心振荡器模型进行的类似分析概述了更大的突发面积。与单神经元模型相比,半中心振荡器模型中的爆发对电压门控电流的最大电导变化也不敏感。因此,除了确保适当的突发特性(例如周期,相位和占空比)外,半中心配置还增强了振荡的鲁棒性,使其对膜参数的随机变化或施加的变化更不敏感。如果相互抑制的强度减弱,内源性爆发又会确保适当的爆发,并将半中心振荡器的最小周期限制为接近单个神经元的周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号