...
首页> 外文期刊>Journal of Neurophysiology >Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
【24h】

Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.

机译:混合系统分析水le心脏中间神经元中低压激活钙电流对猝发持续时间的控制。

获取原文
获取原文并翻译 | 示例
           

摘要

The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.
机译:水ech心跳CPG通过形成基本半中心振荡器的相互抑制的心脏中间神经对的交替爆发来加快。我们使用混合系统探索了心脏中间神经元猝发持续时间的控制,其中通过专注于低电压激活的(药理学上孤立的)生命中间神经元与人工突触连接到实时运行的模型心脏中间神经元。 LVA)钙电流I(CaS)。当爆裂的中子的尖峰频率下降到临界水平f(Final)时,会发生从半中心振荡器的无声到爆裂的转变,在该临界水平上,由于超极化激活的阳离子的积累,被抑制的中子逃逸了。当前,I(h)。我们在活体心脏神经元或模型心脏神经元中改变了I(CaS)失活时间常数。在这两种情况下,变化的I(CaS)失活时间常数都不会影响任一中间神经元的f(Final),但在变化的中间神经元中,突发期间尖峰频率下降到f(Final)的时间常数以及突发持续时间都会变化与I(CaS)失活时间常数直接成线性关系。相反的,不变的中间神经元的爆发没有改变。我们还表明,通过I(CaS)失活控制猝发持续时间的控制不需要通过在突触分离的生活神经元中注入I(CaS)来重构自主爆发来进行突触相互作用。因此,LVA钙电流的失活对于设置猝发持续时间以及心脏中间神经元半中心振荡器的周期至关重要,并且可能是调节神经元猝发持续时间的通用内在机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号