...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Chemical analysis of spray pyrolysis gadolinia-doped ceria electrolyte thin films for solid oxide fuel cells
【24h】

Chemical analysis of spray pyrolysis gadolinia-doped ceria electrolyte thin films for solid oxide fuel cells

机译:喷雾热解氧化ado掺杂二氧化铈电解质薄膜的化学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Current solid oxide fuel cell research aims for the reduction of operating temperatures while maintaining power output to reduce the cost of operation. A promising strategy for achieving this goal is to replace common microcrystalline yttria-stabilized zirconia (YSZ) electrolytes of 10-200 mu m thickness with nanocrystalline gadolinia-doped ceria electrolytes (CGO) of 100-500 nm thickness deposited by spray pyrolysis. While decreasing the electrolyte thickness, we expect ohmic losses of the fuel cell to decrease linearly and can realize lower operation temperatures at equal efficiency. In this study, the chemical homogeneity of as-deposited and annealed Ce0.8Gd0.2O1.9-x thin films deposited by spray pyrolysis at 350 degrees C and annealed at 1000 degrees C were investigated. The chemical composition of the gadolinia-doped ceria films was studied by X-ray photoelectron spectroscopy and Ar+ sputtering as a function of film depth. After the topmost layer was removed by Ar+ sputtering, the thin films showed a surprisingly homogeneous dopant concentration of 23.4 +/- 0.6 at % gadolinia in ceria, independent of the film depth. However, spray-pyrolysis-related residues of the precursors (i.e., chlorine from the precursor salt, carbon from the pyrolysis solvents, and water) could be found at unexpected depths in the film and even after annealing at temperatures as high as 1000 degrees C. The pyrolytic decomposition of the spray pyrolysis thin films is not completely finished after deposition. Changes in the chemical composition may be present during solid oxide fuel cell operation of CGO electrolytes at 600-1000 degrees C.
机译:当前的固体氧化物燃料电池研究旨在降低运行温度,同时保持功率输出以降低运行成本。实现此目标的一种有前途的策略是用通过喷雾热解沉积的100-500 nm厚的纳米氧化g掺杂二氧化铈电解质(CGO)代替10-200μm厚的普通微晶氧化钇稳定的氧化锆(YSZ)电解质。在降低电解质厚度的同时,我们期望燃料电池的欧姆损耗线性降低,并能够以相同的效率实现更低的工作温度。在这项研究中,研究了在350摄氏度下通过喷雾热解沉积并在1000摄氏度下退火的沉积和退火后的Ce0.8Gd0.2O1.9-x薄膜的化学均匀性。通过X射线光电子能谱和Ar +溅射研究了掺杂氧化ado的二氧化铈薄膜的化学成分随薄膜深度的变化。在通过Ar +溅射去除最顶层之后,薄膜显示出令人惊奇的均匀的二氧化铈中do浓度为23.4 +/- 0.6 at%的氧化ado,与膜的深度无关。但是,即使在高达1000摄氏度的温度下退火后,也可能在薄膜的意想不到的深度发现前驱物与喷雾热解相关的残留物(即,来自前体盐的氯,来自热解溶剂的碳和水)。沉积后,喷雾热解薄膜的热解未完全完成。 CGO电解质在600-1000摄氏度下的固体氧化物燃料电池运行期间,化学成分可能会发生变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号