首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles
【24h】

Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles

机译:控制亚10纳米以下超细荧光介孔二氧化硅纳米粒子的生长。

获取原文
获取原文并翻译 | 示例
       

摘要

Mesoporous silica nanoparticles (MSNs) have recently attracted a lot of interest for future nanotheranostic applications because of their large surface-area and high biocompatibility. However, studies to date of MSNs are confined to >10 nm particle sizes which may result in unfavorable biodistribution characteristics for in vivo experiments and hence limit their clinical applications. Here we provide a full account of a synthesis approach to ultrasmall sub-10 nm mesoporous silica nanoparticles with narrow size distributions and homogeneous porous particle morphology. Key features enabling this structure control are (i) fast hydrolysis, (ii) slow condensation, and (iii) capping of particle growth by addition of a PEG-silane at different time-points of the synthesis. Variation of synthesis conditions including monomer/catalyst concentrations, temperature, and time-point of PEG-silane addition leads to synthesis condition-particle structure correlations as mapped out by a combination of results from data analysis of dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. Results establish precise control over average particle diameter from 6 to 15 nm with increments below 1 nm. Solid state nuclear magnetic resonance (NMR) measurements, zeta-potential measurements, and thermogravimetric analysis (TGA) were conducted to reveal details of the particle surface structure. Long-term particle stability tests in deionized (Dl) water and phosphate buffered saline (PBS) IX buffer solution were performed using DLS demonstrating that the PEGylated particles are stable in physiological environments for months. Fluorescent single pore silica nanoparticles (mC dots) encapsulating blue (DEAC) and green (TMR) dyes were synthesized and characterized by a combination of DLS, TEM, static optical spectroscopy, and fluorescence correlation spectroscopy (FCS) establishing probes for multicolor fluorescence imaging applications. The ultraprecise particle size control demonstrated here in particular for sizes around and below 10 nm may render these particles an interesting subject for further fundamental studies of porous silica particle formation mechanisms as well as for sensing, drug delivery, and theranostic applications.
机译:介孔二氧化硅纳米粒子(MSNs)最近因其大的表面积和高的生物相容性而吸引了许多对未来纳米热力学应用的兴趣。但是,迄今为止,MSN的研究仅限于> 10 nm的粒径,这可能会导致体内实验的生物分布特征不利,从而限制了其临床应用。在这里,我们提供了一种合成方法的完整说明,该方法可用于尺寸分布窄且均质的多孔粒子形态的亚10纳米以下超细介孔二氧化硅纳米粒子。能够控制这种结构的关键特征是(i)快速水解,(ii)缓慢缩合和(iii)通过在合成的不同时间点添加PEG-硅烷来限制颗粒的生长。合成条件的变化(包括单体/催化剂的浓度,温度和PEG-硅烷添加的时间点)导致合成条件与颗粒结构的相关性,如动态光散射(DLS)和透射电子的数据分析结果的组合所描绘的显微镜(TEM)测量。结果建立了对6至15 nm的平均粒径的精确控制,且其增量低于1 nm。进行了固态核磁共振(NMR)测量,ζ电位测量和热重分析(TGA),以揭示颗粒表面结构的详细信息。使用DLS在去离子(D1)水和磷酸盐缓冲盐水(PBS)IX缓冲溶液中进行了长期颗粒稳定性测试,证明PEG化的颗粒在生理环境中稳定了几个月。合成了包封蓝色(DEAC)和绿色(TMR)染料的荧光单孔二氧化硅纳米颗粒(mC点),并通过DLS,TEM,静态光谱和荧光相关光谱(FCS)的组合建立了多色荧光成像应用探针的特征。这里展示的超精密粒度控制,特别是对于10 nm左右和10 nm以下的粒度,可能使这些颗粒成为多孔二氧化硅颗粒形成机理的进一步基础研究以及传感,药物递送和治疗学应用的有趣主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号