首页> 外文期刊>The Journal of Chemical Physics >Viscoelasticity and generalized Stokes-Einstein relations of colloidal dispersions
【24h】

Viscoelasticity and generalized Stokes-Einstein relations of colloidal dispersions

机译:胶体分散体的粘弹性和广义Stokes-Einstein关系

获取原文
获取原文并翻译 | 示例
           

摘要

The linear viscoelastic and diffusional properties of colloidal model dispersions are investigated and possible relations between the (dynamic) shear viscosity and various diffusion coefficients are analyzed. Results are presented for hard sphere and charge-stabilized dispersions with long-range screened Coulomb interactions. Calculations of the dynamic long-time properties are based on a (rescaled) mode coupling theory (MCT). For hard sphere suspensions a simple hydrodynamic rescaling of the MCT results is proposed which leads to good agreement between the theory and experimental data and Brownian dynamics simulation results. The rescaled MCT predicts that the zero-shear limiting viscosity of hard sphere dispersions obeys nearly quantitative generalized Stokes-Einstein (GSE) relations both with regard to the long-time self-diffusion coefficient and the long-time collective diffusion coefficient measured at the principal peak of the static structure factor. In contrast, the MCT predicts that the same GSEs are violated in the case of dispersions of highly charged particles. The corresponding short-time GSEs are found to be partially violated both for charged and uncharged colloidal spheres. A frequency dependent GSE, relating the elastic sorage and viscous loss moduli to the particle mean squared displacement, is also investigated, According to MCT, this GSE holds fairly well for concentrated hard spheres, but not for charge-stabilized systems. Remarkably good agreement is obtained, however, with regard to the frequency dependence of the Laplace-transformed reduced shear stress relaxation function and the Laplace-transformed reduced time-dependent self-diffusion coefficient for both charged and uncharged particle dispersions.
机译:研究了胶体模型分散体的线性粘弹性和扩散特性,并分析了(动态)剪切粘度与各种扩散系数之间的可能关系。给出了具有长期筛选的库仑相互作用的硬球和电荷稳定分散体的结果。动态长期特性的计算基于(重新缩放的)模式耦合理论(MCT)。对于硬球悬架,提出了MCT结果的简单水动力重标定,从而使理论和实验数据与布朗动力学模拟结果之间具有良好的一致性。重新定标的MCT预测,硬球分散体的零剪切极限黏度在长期自扩散系数和在主体处测量的长期集体扩散系数方面都遵循几乎定量的广义Stokes-Einstein(GSE)关系。静态结构因子的峰值。相反,MCT预测,在高电荷粒子分散的情况下会违反相同的GSE。已发现带电和不带电的胶体球都部分违反了相应的短期GSE。还研究了与频率有关的GSE,它将弹性弹性和粘性损耗模量与颗粒均方位移相关联。根据MCT,此GSE对于集中的硬球体非常适用,但对于电荷稳定的系统却不适用。然而,关于带电和不带电的粒子分散体,在拉普拉斯变换的减小的切应力松弛函数的频率依赖性和拉普拉斯变换的减小的时间相关的自扩散系数的频率依赖性方面,获得了很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号