首页> 外文期刊>The Journal of Chemical Physics >Further dynamical studies of the dissociation and elimination reactions of methyl nitrite
【24h】

Further dynamical studies of the dissociation and elimination reactions of methyl nitrite

机译:亚硝酸甲酯解离和消除反应的进一步动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Classical trajectory calculations were performed to investigate the effects of molecular rotation, deuterium substitution, and the possibility of mode-specific effects in the two unimolecular channels that initiate the thermal decomposition of methyl nitrite (MeONO): O-N bond dissociation giving CH_3O and NO and concerted elimination to produce CH_2O and HNO. The calculations were carried out at a total energy of 140 kcal/mol, at which a microcanonical ensemble of excited molecules is maintained throughout the decomposition. Total and individual rate coefficients were evaluated under several types of initial sampling conditions: microcanonical (i. e., random) distribution of vibrational energy, selective excitation of normal modes, and various angular momentum orientations. Comparisons of the results obtained from random initial conditions and normal mode excitations show that there is significant enhancement of the decomposition rates for excitations of several vibrational modes (apparent non-RRKM behavior). The calculations predict rapid energy exchange among modes 465 (ONO bend), 715 (CO stretch), and 931 (O-N stretch) as well as strong coupling between modes 246 (CONO torsion) and 1670 (N = O stretch). The vibrational state distributions for the nascent NO species computed under excitations of modes 246 and 1670 are much broader than that obtained under random initial conditions. This gives further evidence for incomplete relaxation of vibrational energy on the time scale of reaction. Molecular rotation enhances the decomposition rates significantly. More specifically, exciting the symmetric top axis promotes elimination, while exciting either of the remaining two axes promotes dissociation. The presence of two-dimensional rotors at the dissociation transition state may explain the inverse isotope effect found in our previous classical trajectory calculations [J. Chem. Phys. 109, 8907 (1998)]. Finally, the importance of anharmonicity in the unimolecular density of states was estimated by fits of modified RRK schemes to our previously reported microcanonical rate coefficients.
机译:进行了经典的轨迹计算,以研究分子旋转,氘取代以及在引发亚硝酸甲酯(MeONO)热分解的两个非分子通道中特定模式效应的可能性:ON键解离生成CH_3O和NO并协同消除生成CH_2O和HNO。计算是在总能量为140 kcal / mol的条件下进行的,在该能量下,整个分解过程都保持了激发分子的微经典合奏。在几种类型的初始采样条件下评估了总速率系数和个体速率系数:振动能量的微规范(即随机)分布,正常模式的选择性激励以及各种角动量方向。从随机初始条件和正常模态激励获得的结果的比较表明,几种振动模态(表观非RRKM行为)的激励的分解速率都有显着提高。该计算预测模式465(ONO弯曲),715(CO拉伸)和931(O-N拉伸)之间的快速能量交换,以及模式246(CONO扭转)和1670(N = O拉伸)之间的强耦合。在模式246和1670的激发下计算出的新生NO物种的振动状态分布比在随机初始条件下获得的振动状态分布要宽得多。这提供了在反应时间尺度上振动能量不完全松弛的进一步证据。分子旋转显着提高了分解速率。更具体地说,激发对称的上轴促进消除,而激发其余两个轴中的任何一个促进离解。二维转子在解离过渡态的存在可以解释在我们以前的经典轨迹计算中发现的反同位素效应[J.化学物理109,8907(1998)]。最后,通过将改进的RRK方案与我们先前报道的微规范速率系数进行拟合,可以估计非谐性在单分子状态密度中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号