首页> 中文期刊> 《中国化学工程学报:英文版》 >Reaction mechanism of methyl nitrite dissociation during co catalytic coupling to dimethyl oxalate:A density functional theory study

Reaction mechanism of methyl nitrite dissociation during co catalytic coupling to dimethyl oxalate:A density functional theory study

         

摘要

Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calculations based on density functional theory were performed to explore the reaction mechanism for the non-catalytic dissociation of methyl nitrite in the gas phase and the catalytic dissociation of methyl nitrite on Pd(111) surface since palladium supported on alpha-alumina is the most effective catalyst for the coupling. For the non-catalytic case, the calculated results show that the CH_3O–NO bond will break with a bond energy of 1.91 eV, and the produced CH_3O radicals easily decompose to formaldehyde, while the further dissociation of formaldehyde in the gas phase is difficult due to the strong C–H bond. On the other hand, the catalytic dissociation of methyl nitrite on Pd(111) to the adsorbed CH_3O and NO takes place with a small energy barrier of 0.03 eV. The calculated activation energies along the proposed reaction pathways indicate that(i) at low coverage, a successive dehydrogenation of the adsorbed CH_3O to CO and H is favored while(ii) at high coverage, hydrogenation of CH_3O to methanol and carbonylation of CH_3O to methyl formate are more preferred. On the basis of the proposed reaction mechanism,two meaningful ways are proposed to suppress the dissociation of methyl nitrate during the CO catalytic coupling to dimethyl oxalate.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号