...
首页> 外文期刊>The Journal of Chemical Physics >A mode-selective differential scattering study of the C2H2++methanol reaction: Influence of collision intermediates, collision times, and transition states
【24h】

A mode-selective differential scattering study of the C2H2++methanol reaction: Influence of collision intermediates, collision times, and transition states

机译:C2H2 ++甲醇反应的模式选择微分散射研究:碰撞中间体,碰撞时间和过渡态的影响

获取原文
获取原文并翻译 | 示例

摘要

We report the vibrational and collision energy dependence of cross sections and product branching in the reaction of C2H2+ with CD3OD, CD3OH, and CH3OD. We also report axial recoil velocity distributions, along with modeling. At low collision energies, reaction is mediated by a picosecond lifetime complex of the [C2H2:methanol](+) form. The bottleneck that controls overall reaction efficiency appears to be formation of the complex, and reactivity is influenced by collision energy and C2H2+ CC stretch excitation, but not by bending vibration. The most energetically favorable exit channel from the complex is isomerization to covalently bound C3H6O+ complexes, but this does not occur. Instead the [C2H2:methanol](+) decays by breakup to C2H2+CH4O+, C2H3+CH2OH+, and C2H+CH3OH2+ channels. Changes in the branching with available energy provide some insight into the nature of the transition states that control decay of the complex. As collision energy is raised above similar to 1 eV, the reaction gradually becomes direct, i.e., the collision time drops to well below the rotational period of the collision complex (< similar to 0.5 ps). In this regime, the dominant charge transfer and hydride abstraction products mostly form in large impact parameter collisions. At high energies there is little dependence of either reaction efficiency or product branching on collision energy or reactant vibrational state, suggesting that both are probably controlled largely by collision geometry. (C) 1998 American Institute of Physics. [References: 32]
机译:我们报道了C2H2 +与CD3OD,CD3OH和CH3OD反应中截面和产物分支的振动和碰撞能量依赖性。我们还将报告轴向反冲速度分布以及模型。在低碰撞能量下,反应由[C2H2:甲醇](+)形式的皮秒寿命复合物介导。控制整体反应效率的瓶颈似乎是配合物的形成,反应性受碰撞能量和C2H2 + CC拉伸激发的影响,但不受弯曲振动的影响。从络合物中最能量最有利的出口通道是异构化为共价键合的C3H6O +络合物,但这没有发生。相反,[C2H2:甲醇](+)通过分解为C2H2 + CH4O +,C2H3 + CH2OH +和C2H + CH3OH2 +通道而衰减。可用能量支化的变化为控制复合物衰变的过渡态的性质提供了一些见识。当碰撞能量提高到类似于1 eV以上时,反应逐渐变得直接,即碰撞时间下降到远低于碰撞复合体的旋转周期(<近似0.5 ps)。在这种情况下,主要的电荷转移和氢化物提取产物主要形成于较大的碰撞参数碰撞中。在高能量下,反应效率或产物分支对碰撞能量或反应物振动状态几乎没有依赖性,这表明两者都可能很大程度上受碰撞几何形状控制。 (C)1998美国物理研究所。 [参考:32]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号