...
首页> 外文期刊>The Journal of Chemical Physics >Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN
【24h】

Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN

机译:克服生物分子动力学中的稳定性限制。 I.将外推力拆分与LN中的Langevin动力学相结合

获取原文
获取原文并翻译 | 示例
           

摘要

We present an efficient new method termed LN for propagating biomolecular dynamics according to the Langevin equation that arose fortuitously upon analysis of the range of harmonic validity of our normal-mode scheme LIN. LN combines force linearization with force splitting techniques and disposes of LIN'S computationally intensive minimization (anharmonic correction) component. Unlike the competitive multiple-timestepping (MTS) schemes today-formulated to be symplectic and time-reversible-LN merges the slow and fast forces via extrapolation rather than "impulses;" the Langevin heat bath prevents systematic energy drifts. This combination succeeds in achieving more significant speedups than these MTS methods which are Limited by resonance artifacts to an outer timestep less than some integer multiple of half the period of the fastest motion (around 4-5 fs for biomolecules). We show that LN achieves very good agreement with small-timestep solutions of the Langevin equation in terms of thermodynamics (energy means and variances), geometry, and dynamics (spectral densities) for two proteins in vacuum and a large water system. Significantly, the frequency of updating the slow forces extends to 48 fs or more, resulting in speedup factors exceeding 10. The implementation of LN in any program that employs force-splitting computations is straightforward, with only partial second-derivative information required, as well as sparse Hessian/vector multiplication routines. The linearization part of LN could even be replaced by direct evaluation of the fast components. The application of LN to biomolecular dynamics is well suited for configurational sampling, thermodynamic, and structural questions. (C) 1998 American Institute of Physics. [References: 49]
机译:我们根据兰格文方程式提出了一种称为LN的有效新方法,用于传播生物分子动力学,该方程式是在分析我们的正常模式LIN的谐波有效范围时偶然出现的。 LN将力线性化与力分裂技术结合在一起,并处理LIN的计算密集型最小化(非谐波校正)组件。与当今被认为是辛且时间可逆的竞争性多时间步长(MTS)方案不同,LN通过外推而不是“脉冲”来合并慢速和快速力。 Langevin热浴可以防止系统的能量漂移。这种组合成功实现了比这些MTS方法更显着的加速,而这些MTS方法受共振伪影限制在外部时间步长,而外部时间步小于最快运动周期的一半的整数倍(生物分子约为4-5 fs)。我们表明,在真空和大型水系统中,两种蛋白质的热力学(能量均值和方差),几何形状和动力学(光谱密度)方面,LN与Langevin方程的小时步解实现了很好的一致性。重要的是,更新慢力的频率扩展到48 fs或更多,导致加速因子超过10。在使用力分解计算的任何程序中,LN的实现都很简单,也只需要部分二阶导数信息。作为稀疏的Hessian /向量乘法例程。 LN的线性化部分甚至可以由直接评估快速组件来代替。 LN在生物分子动力学中的应用非常适合配置采样,热力学和结构问题。 (C)1998美国物理研究所。 [参考:49]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号