...
首页> 外文期刊>The Journal of Chemical Physics >Nuclear spin relaxation in paramagnetic complexes of S = 1: Electron spin relaxation effects
【24h】

Nuclear spin relaxation in paramagnetic complexes of S = 1: Electron spin relaxation effects

机译:S = 1的顺磁性配合物中的核自旋弛豫:电子自旋弛豫效应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electron spin relaxation for an S = 1 system and its field dependence in the presence of static zero-field splitting (ZFS) has been described and incorporated in a model for nuclear spin-lattice relaxation in paramagnetic complexes in solution, proposed earlier by the group in Florence. Slow reorientation is assumed and the electron spin energy level structure (at any orientation of the molecule with respect to the laboratory frame) is described in terms of the Zeeman interaction and of the static ZFS. The electron spin relaxation is assumed to be caused by a transient ZFS modulated by the deformation of the complex described as a distortional (or pseudorotational) motion and the Redfield theory is used to derive the electron spin relaxation matrices. In the description of the electron spin relaxation we neglect any contribution from mechanisms involving modulation by reorientation, such as those of the static ZFS and the less important Zeeman interaction, as we limit ourselves to the slow-rotation limit (i.e., #tau#_R #tau#_S). This in general covers the behavior of proteins and macromolecules. THe decomposition (DC) approximation is used, which means that the reorientational motion and electron spin dynamics are assumed to be uncorrelated. This is not a serious problem, due to the slow-rotation condition, since reorientational and distortional motions are time-scale separated. The resulting nuclear magnetic relaxation dispersion (NMRD) profiles obtained using the Florence model are calculated and compared with the calculations of the Swedish approach, which can be considered essentially exact within the given set of assumed interactions and dynamic processes. That theory is not restricted by the Redfield limit and can thus handle electron spin relaxation in the slow-motion regime, which is a consequence of not explicitly defining any electron spin relaxation times. Furthermore, the DC approximation is not invoked, and in addition, the electron spin relaxation is described by reorientationally modulated static ZFS and Zeeman interaction besides the distortionally modulated transient ZFS. The curves computed with the Florence model show a satisfactory agreement with these more accurate calculations of the Swedish approach, in particular for the axially symmetric static ZFS tensor, providing confidence in the adequacy of the electron spin relaxation model under the condition of slow rotation. The comparison is also quite instructive as far as the physical meaning of the electron spin relaxation and of its interplay with the nuclearspin spin system are concerned.
机译:已经描述了S = 1系统的电子自旋弛豫及其在存在静态零场分裂(ZFS)的情况下的场依存性,并将其纳入溶液中顺磁性络合物中核自旋晶格弛豫的模型中在佛罗伦萨。假定缓慢的重新取向,并且根据塞曼相互作用和静态ZFS描述了电子自旋能级结构(分子相对于实验室框架的任何取向)。假定电子自旋弛豫是由瞬态ZFS引起的,该暂态ZFS受复合物的形变所调制,该形变被描述为畸变(或伪旋转)运动,并且Redfield理论用于推导电子自旋弛豫矩阵。在电子自旋弛豫的描述中,我们忽略了涉及通过重定向进行调制的机制的任何贡献,例如静态ZFS和次重要的塞曼相互作用,因为我们将自己限制在慢速旋转极限(即#tau#_R #tau#_S)。通常,这涵盖了蛋白质和大分子的行为。使用分解(DC)近似值,这意味着重新定向运动和电子自旋动力学被假定为不相关。由于慢速旋转条件,这不是一个严重的问题,因为重新定向运动和变形运动是时标分离的。计算了使用佛罗伦萨模型获得的最终核磁弛豫色散(NMRD)曲线,并将其与瑞典方法的计算结果进行了比较,这可以认为在给定的假定相互作用和动态过程的给定范围内基本上是精确的。该理论不受Redfield限制的限制,因此可以在慢动作状态下处理电子自旋弛豫,这是未明确定义任何电子自旋弛豫时间的结果。此外,不调用DC近似,此外,除了扭曲调制的瞬态ZFS以外,还通过重新定向调制的静态ZFS和塞曼相互作用描述了电子自旋弛豫。用佛罗伦斯模型计算的曲线与瑞典方法的这些更精确的计算显示出令人满意的一致性,尤其是对于轴向对称静态ZFS张量而言,这为慢旋转条件下电子自旋弛豫模型的充分性提供了信心。就电子自旋弛豫及其与核自旋自旋系统的相互作用的物理意义而言,该比较也是很有启发性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号