首页> 外文期刊>The Journal of Chemical Physics >The anharmonic features of the short-time dynamics of fluids: The time evolution and mixing of instantaneous normal modes
【24h】

The anharmonic features of the short-time dynamics of fluids: The time evolution and mixing of instantaneous normal modes

机译:流体短时动力学的非谐特征:瞬时正态模式的时间演化和混合

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the obvious role of sharply varying repulsive forces in determining the structure of most liquids, for short periods of time, motion in liquids looks remarkably harmonic. That is, there seem to be well-defined collective, but independent, harmonic modes governing the ultrafast dynamics launched from any given liquid configuration. Because liquids are not truly harmonic, however, these modes cannot last forever. In particular, "instantaneous" modes of this sort eventually have to give way to new instantaneous modes-ones more appropriate to whatever new configuration the liquid has evolved into. In this paper we investigate just this process of mode evolution. By concentrating on solely the highest frequency modes, it is possible to formulate analytical models for both the modes and the anharmonic interactions that affect them. We can therefore begin to understand the mechanisms by which modes change in time and the kinds of time scales on which the specific anharmonic processes occur in liquids. What we find is that there are several rather distinct signatures of anharmonicity: we see first that the anharmonicity within a mode itself continually causes the mode frequency to fluctuate. More sporadically, we find that two different but nearly resonant modes will sometimes interact strongly enough with one another to cause a temporary-though not a permanent-mixing between the modes. Of course, both of these processes are, in some sense, breakdowns of instantaneous-normal-mode theory, but neither of them affects the basic identity and existence of instantaneous modes. The eventual destruction-of the modes turns out to be an even less frequent event precipitated by an even stronger mixing between a mode and the motion of surrounding atoms. It is precisely this longer time scale that may mark the first point at which diffusive motion plays an essential role in liquid dynamics. (C) 1998 American Institute of Physics. [References: 58]
机译:尽管在确定大多数液体的结构中明显地改变了排斥力的作用很明显,但在短时间内,液体中的运动看起来却非常和谐。也就是说,似乎存在定义明确的集体但独立的谐波模式,该模式控制从任何给定液体配置中发出的超快速动力学。但是,由于液体并不是真正的谐波,所以这些模式无法永远持续下去。尤其是,这种“瞬时”模式最终必须让位于新的瞬时模式-一种更适合液体演变成的新配置。在本文中,我们仅研究模式演化的这一过程。通过仅关注最高频率模式,就可以为模式和影响它们的非谐相互作用建立解析模型。因此,我们可以开始理解模式随时间变化的机制以及在液体中发生特定非谐过程的时间尺度的种类。我们发现,有几个相当明显的非谐特征:我们首先看到,模式本身中的非谐性会持续导致模式频率波动。更偶然地,我们发现两种不同但几乎共振的模式有时会相互之间产生足够强的相互作用,从而导致这些模式之间出现暂时的而非永久的混合。当然,从某种意义上讲,这两个过程都是瞬时常态模式理论的分解,但是它们都不影响瞬时模式的基本特性和存在。模式的最终破坏被证明是由模式与周围原子的运动之间甚至更强的混合所引起的,频率更低的事件。正是这种较长的时间尺度可能标志着扩散运动在液体动力学中起关键作用的第一点。 (C)1998美国物理研究所。 [参考:58]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号