...
首页> 外文期刊>The European physical journal, B. Condensed matter physics >Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation
【24h】

Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation

机译:受控三维Gross-Pitaevskii方程局部解的稳定性和崩溃

获取原文
获取原文并翻译 | 示例

摘要

On the basis of recent investigations, a newly developed analytical procedure is used for constructing a wide class of localized solutions of the controlled three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the dynamics of Bose-Einstein condensates (BECs) in the presence of a spatio-temporally varying external potential. The controlled 3D GPE is decomposed into a two-dimensional (2D) linear Schrodinger equation (called the ‘transverse equation’) and a one-dimensional (1D) nonlinear Schrodinger equation (called the ‘longitudinal equation’), constrained by a variational condition for the controlling potential. The latter corresponds to the requirement for the minimization of the control operation in the transverse plane. Then, the above class of localized solutions are constructed as the product of the solutions of the transverse and longitudinal equations. A consistency condition between the transverse and longitudinal solutions yields a relationship between the transverse and longitudinal restoring forces produced by the external trapping potential well through a ‘controlling parameter’ (i.e. the average, with respect to the transverse profile, of the nonlinear inter-atomic interaction term of the GPE). It is found that the longitudinal profile supports localized solutions in the form of bright, dark or grey solitons with timedependent amplitudes, widths and centroids. The related longitudinal phase is varying in space and time with time-dependent curvature radius and wavenumber. In turn, all the above parameters (i.e. amplitudes, widths, centroids, curvature radius and wavenumbers) can be easily expressed in terms of the controlling parameter. It is also found that the transverse profile has the form of Hermite-Gauss functions (depending on the transverse coordinates), and the explicit spatio-temporal dependence of the controlling potential is self-consistently determined. On the basis of these exact 3D analytical solutions, a stability analysis is carried out, focusing our attention on the physical conditions for having collapsing or non-collapsing solutions.
机译:在最近的研究基础上,新开发的分析程序用于构建控制玻色-爱因斯坦凝聚物(BEC)动力学的受控三维(3D)Gross-Pitaevskii方程(GPE)的各种局部解。在存在时空变化的外部电势的情况下。受控3D GPE分解为受变分条件约束的二维(2D)线性Schrodinger方程(称为``横向方程'')和一维(1D)非线性Schrodinger方程(称为``纵向方程'')具有控制潜力。后者对应于最小化横向平面中的控制操作的要求。然后,将上述一类局部解构造为横向和纵向方程解的乘积。横向解决方案和纵向解决方案之间的一致性条件通过“控制参数”(即非线性原子间原子的平均值,相对于横向轮廓的平均值)在外部俘获势阱产生的横向和纵向恢复力之间产生关系。 GPE的互动条件)。发现纵向轮廓支持明亮的,黑暗的或灰色的孤子形式的局部解,其具有随时间变化的幅度,宽度和质心。相关的纵向相位在空间和时间上随时间变化,其曲率半径和波数与时间有关。继而,可以根据控制参数容易地表达所有上述参数(即,振幅,宽度,质心,曲率半径和波数)。还发现横向轮廓具有Hermite-Gauss函数的形式(取决于横向坐标),并且控制电位的明确时空依赖性是自洽确定的。在这些精确的3D分析解决方案的基础上,进行了稳定性分析,使我们的注意力集中在具有塌陷或不塌陷解决方案的物理条件上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号