首页> 外文期刊>The FEBS journal >The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures
【24h】

The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures

机译:大分子晶体学中的R因子缺口:洞悉精确结构的未开发潜力

获取原文
获取原文并翻译 | 示例
           

摘要

In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree. These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its proteinsolvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill.
机译:在大分子晶体学中,观察到和预测的结构因子(Rcryst和Rfree)之间的一致性很少优于20%。这远大于实验误差的估计值(Rmerge)。 Rcryst和Rmerge之间的区别是R系数差距。小分子晶体学中没有这种缺口,对于这种结构,计算出的结构因子通常被认为比实验测量结果更准确。也许大分子数据的真实噪声水平高于预期?还是由于相位不正确导致精简模型陷入局部极小值而导致差距?通过使用程序MLFSOM生成模拟的衍射图,并包括所有可能的实验误差来源,我们证明情况并非如此。处理我们的模拟数据所得出的值与除最终Rcryst和Rfree之外的所有晶体学统计数据的真实数据都无法区分。对于模拟数据,这些值分别降低到3.8%和5.5%,这表明大分子晶体学中R因子较高的原因既不是实验误差也不是相偏,而是用于解释我们的观察结果的模型中的潜在不足。通过小角度X射线散射,计算化学和晶体学之间的协同作用,可以改善目前无法准确表示整个大分子及其柔韧性和蛋白溶剂界面的能力。我们发现的令人兴奋的含义是,大分子数据具有解决纳米级真实性质中歧义性的巨大潜能和未开发潜力,这是晶体学第二世纪有望实现的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号