首页> 外文期刊>The European Journal of Neuroscience >How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis
【24h】

How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis

机译:强化学习中有多少是工作记忆而不是强化学习?行为,计算和神经遗传学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Instrumental learning involves corticostriatal circuitry and the dopaminergic system. This system is typically modeled in the reinforcement learning (RL) framework by incrementally accumulating reward values of states and actions. However, human learning also implicates prefrontal cortical mechanisms involved in higher level cognitive functions. The interaction of these systems remains poorly understood, and models of human behavior often ignore working memory (WM) and therefore incorrectly assign behavioral variance to the RL system. Here we designed a task that highlights the profound entanglement of these two processes, even in simple learning problems. By systematically varying the size of the learning problem and delay between stimulus repetitions, we separately extracted WM-specific effects of load and delay on learning. We propose a new computational model that accounts for the dynamic integration of RL and WM processes observed in subjects' behavior. Incorporating capacity-limited WM into the model allowed us to capture behavioral variance that could not be captured in a pure RL framework even if we (implausibly) allowed separate RL systems for each set size. The WM component also allowed for a more reasonable estimation of a single RL process. Finally, we report effects of two genetic polymorphisms having relative specificity for prefrontal and basal ganglia functions. Whereas the COMT gene coding for catechol-O-methyl transferase selectively influenced model estimates of WM capacity, the GPR6 gene coding for G-protein-coupled receptor 6 influenced the RL learning rate. Thus, this study allowed us to specify distinct influences of the high-level and low-level cognitive functions on instrumental learning, beyond the possibilities offered by simple RL models.
机译:器乐学习涉及皮质窦道和多巴胺能系统。该系统通常在强化学习(RL)框架中通过递增累积状态和动作的奖励值来建模。然而,人类学习还牵涉到涉及较高水平的认知功能的前额叶皮层机制。这些系统之间的相互作用仍然知之甚少,人类行为模型经常忽略工作记忆(WM),因此错误地将行为差异分配给RL系统。在这里,我们设计了一个任务,突出了这两个过程的深刻纠缠,即使在简单的学习问题中也是如此。通过系统地改变学习问题的大小和刺激重复之间的延迟,我们分别提取了WM特定的负载和延迟对学习的影响。我们提出了一种新的计算模型,该模型考虑了受试者行为中观察到的RL和WM过程的动态整合。将容量受限的WM纳入模型可以使我们捕获行为差异,即使我们(不太可能)为每个集合大小允许使用单独的RL系统,也可以捕获纯RL框架中无法捕获的行为差异。 WM组件还允许对单个RL过程进行更合理的估计。最后,我们报告了对前额神经节和基底神经节功能具有相对特异性的两种遗传多态性的影响。编码儿茶酚-O-甲基转移酶的COMT基因选择性地影响WM能力的模型估计,而编码G蛋白偶联受体6的GPR6基因影响RL学习率。因此,这项研究使我们能够指定高级和低级认知功能对工具学习的独特影响,而不仅仅是简单的RL模型所提供的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号