...
首页> 外文期刊>Technical physics >Heating and Cooling of the Multiply Charged Ion Nonequilibrium Plasma in a High-Current Extended Low-Inductance Discharge
【24h】

Heating and Cooling of the Multiply Charged Ion Nonequilibrium Plasma in a High-Current Extended Low-Inductance Discharge

机译:大电流扩展低电感放电中带电离子非平衡等离子体的加热和冷却

获取原文
获取原文并翻译 | 示例

摘要

Using a radiation magnetohydrodynamics two-temperature model (RMHD model) of a highcurrent volumetric radiating Z-discharge, the heating and cooling of the nitrogen plasma in a pulsed pinched extended discharge is investigated as applied to the problem of creating a recombination laser based on 3→2 transitions of hydrogen-like nitrogen ions (λ = 13.4 nm). It is shown that the power supply of the discharge, which is represented by a dual storage-forming line and a transmission line, makes it possible to raise the power density of the nitrogen plasma to 0.01-1.00 TW/cm3. Accordingly, there arises the possibility of generating a fully ionized (i.e., consisting of bare nuclei and electrons) plasma through the heating (compression) of electrons owing to the self-magnetic field of the plasma current and Joule heat even if the plasma is cooled by its own radiation at this stage. Such a plasma is needed to produce the lasing (active) medium of a recombination laser based on electron transitions in hydrogen-like ions. At the second stage, it is necessary to rapidly and deeply cool the plasma to 20-40 eV for 1-2 ns. Cooling of the fully ionized expanding plasma was numerically simulated with the discharge current switched on and off by means of a switch with a rapidly rising resistance. In both cases, the plasma expansion in the discharge is not adiabatic. Even after the discharge current is fairly rapidly switched off, heating of electrons continues inside the plasma column for a time longer than the switching time. Discharge current switchoff improves the electron cooling efficiency only slightly. Under such conditions, the plasma cools down to 50-60 eV in the former case and to 46-54 eV in the latter case for 2-3 ns.
机译:使用大电流体积辐射Z放电的辐射磁流体动力学两温模型(RMHD模型),研究了脉冲挤压扩展放电中氮等离子体的加热和冷却方法,以解决基于3的复合激光器的问题→2个类似氢的氮离子跃迁(λ= 13.4 nm)。可以看出,以双存储形成线和传输线为代表的放电电源可以将氮等离子体的功率密度提高到0.01-1.00TW / cm 3。因此,即使等离子体被冷却,由于等离子体电流的自磁场和焦耳热,也存在通过电子的加热(压缩)而产生完全电离的(即,由裸核和电子组成的)等离子体的可能性。在这个阶段通过自身的辐射。需要这样的等离子体来产生基于类氢离子中电子跃迁的复合激光器的激光(活性)介质。在第二阶段,有必要将等离子迅速而深刻地冷却到20-40 eV,持续1-2 ns。通过电阻快速上升的开关打开和关闭放电电流,对完全电离的膨胀等离子体的冷却进行了数值模拟。在这两种情况下,放电中的等离子体膨胀都不是绝热的。即使在放电电流被相当迅速地关闭之后,电子的加热仍在等离子体柱内持续的时间比切换时间更长。放电电流关断仅稍微改善了电子冷却效率。在这种情况下,等离子体在前一种情况下冷却至50-60 eV,在后一种情况下冷却至46-54 eV持续2-3 ns。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号