...
首页> 外文期刊>Chemistry: A European journal >Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents
【24h】

Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents

机译:旋转动力学解释了PAMAM树枝状,基于Gd的潜在MRI造影剂的pH依赖性弛豫性

获取原文
获取原文并翻译 | 示例

摘要

The EPTPA(5-) chelate, which ensures fast water exchange in Gd-III complexes, has been coupled to three different generations (5, 7, and 9) of polyamidoamine (PAMAM) dendrimers through benzylthiourea linkages (H(5)EPTPA = ethylenepropylenetriamine-N,N,N',N",N"-pentaacetic acid). The proton relaxivities measured at pH 7.4 for the dendrimer complexes G5-(GdEPTPA)(111) G7-(GdEPTPA)(253) and G9-(GdEPTPA)(1157) decrease with increasing temperature, indicating that, for the first time for dendrimers, slow water exchange does not limit relaxivity. At a given field and temperature, the relaxivity increases from G5 to G7, and then slightly decreases for G9 (r(1) = 20.5, 28.3 and 27.9 mm(-1)s(-1), respectively, at 37° C, 30 MHz). The relaxivities show a strong and reversible pH dependency for all three dendrimer complexes. This originates from the pH-dependent rotational dynamics of the dendrimer skeleton, which was evidenced by a combined variable-temperature and multiple-field O-17 NMR and H-1 relaxivity study performed at pH 6.0 and 9.9 on G5-(GdEPTPA)(111). The longitudinal O-17 and H-1 relaxation rates of the dendrimeric complex are strongly pH-dependent, whereas they are not for the [Gd(EPTPA)(H2O)](2-) monomer chelate. The longitudinal O-17 and H-1 relaxation rates have been analysed by the Lipari-Szabo spectral density functions and correlation times have been calculated for the global motion of the entire macromolecule (τ(gO)) and the local motion of the Gd-III chelates on the surface (τ(lO)), correlated by means of an order parameter S'. The dendrimer complex G5(GdEPTPA)(111) has a considerably higher τ(gO) under acidic than under basic conditions (T-gO(298)=4040ps and 2950ps, respectively), while local motions are less influenced by pH (τ(298)(lO) to 150 and 125 ps). The order parameter, characterizing the rigidity of the macromolecule, is also higher at pH 6.0 than at pH 9.9 (S-2 = 0.43 vs 0.36, respectively). The pH dependence of the global correlation time can be related to the protonation of the tertiary amine groups in the PAMAM skeleton, which leads to an expanded and more rigid dendrimeric structure at lower pH. The increase of τ(gO) with decreasing pH is responsible for the pH dependent proton relaxivities. The water exchange rate on G5-(GdEPTPA)(111) (k(ex)(298) = 150 x 10(6) s(-1)) shows no significant pH dependency and is similar to the one measured for the monomer [Gd(EPTPA)(H2O)](2-) The proton relaxivity of G5-(GdEPTPA)(111) is mainly limited by the important flexibility of the dendrimer structure, and to a small extent, by a faster than optimal water exchange rate.
机译:EPTPA(5-)螯合物可确保Gd-III配合物中的快速水交换,并已通过苄基硫脲键(H(5)EPTPA =乙丙三胺-N,N,N',N“,N”-五乙酸)。树枝状聚合物配合物G5-(GdEPTPA)(111)G7-(GdEPTPA)(253)和G9-(GdEPTPA)(1157)在pH 7.4下测得的质子弛豫度随温度升高而降低,这表明树枝状聚合物首次出现质子弛豫,缓慢的水交换不会限制放松。在给定的场和温度下,弛豫率从G5升高到G7,然后在G9时略有降低(r(1)= 20.5、28.3和27.9 mm(-1)s(-1),分别在37°C, 30 MHz)。对于所有三种树枝状大分子复合物,弛豫性显示出强烈且可逆的pH依赖性。这源自树枝状聚合物骨架的pH依赖性旋转动力学,这通过在G5-(GdEPTPA)的pH 6.0和9.9下进行的可变温度和多场O-17 NMR和H-1弛豫研究的结合得到证明( 111)。树枝状复合物的纵向O-17和H-1弛豫速率与pH密切相关,而对于[Gd(EPTPA)(H2O)](2-)单体螯合物而言,则不是。通过Lipari-Szabo光谱密度函数分析了纵向O-17和H-1弛豫率,并计算了整个大分子的整体运动(τ(gO))和Gd-的局部运动的相关时间。 III在表面上是螯合的(τ(10)),其通过有序参数S'相关。树状大分子复合物G5(GdEPTPA)(111)在酸性下的τ(gO)比在碱性条件下高得多(分别为T-gO(298)= 4040ps和2950ps),而局部运动受pH值(τ( 298)(10)至150和125 ps)。在pH 6.0时,表征大分子刚性的有序参数也比在pH 9.9时更高(S-2 = 0.43 vs 0.36)。全局相关时间的pH依赖性可能与PAMAM骨架中叔胺基的质子化有关,这会导致在较低pH下扩展且更刚性的树枝状结构。随pH降低,τ(gO)的增加是pH依赖质子弛豫的原因。 G5-(GdEPTPA)(111)上的水交换速率(k(ex)(298)= 150 x 10(6)s(-1))表现出无显着的pH依赖性,并且类似于对单体[ Gd(EPTPA)(H2O)](2-)G5-(GdEPTPA)(111)的质子弛豫性主要受树枝状聚合物结构的重要柔韧性限制,并且在一定程度上受制于比最佳水交换速率快的状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号