首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Another approach to the Gibbs-Thomson equation and the melting point of polymers and oligomers
【24h】

Another approach to the Gibbs-Thomson equation and the melting point of polymers and oligomers

机译:吉布斯-汤姆森方程以及聚合物和低聚物的熔点的另一种方法

获取原文
获取原文并翻译 | 示例
           

摘要

The common Gibbs-Tomson equation, widely used to explain the melting te,perature of lamella crystals, is based on a given heat of fusion and a given surface free energy and the size (thickness) of the crystal. With this equation it is not possible to explain the, compared to the thickness of the crystals, very high melting temperature of cyclic alkanes and ultra-high molar mass polyethylene (UHMMPE). Another thermodynamic approach to the Gibbs-Thomson equation, starting from an incremental composition of enthalpy and entropy of the chain molecule, is presented. This describes the melting temperature of (lamella) crystals of linear, folded and cyclic alkanes as well as UHMMPE, all forming crystals of the same lattice type, with only one set of parameters. The essential variable turns out to be the number of CH_2-groups of the respective molecule, incorporated into the crystallite, rather than its thickness. This may be explained if we assume the melting process caused by conformation dynamics which are more restricting the greater number of CH_2-groups that are involved in the chain movement. In a lamella crystal of a certain thickness, a cyclic alkane 'feels' longer than an n-alkane, as well as a linear molecule with adjacent or tight folds feels longer than one with randomly distributed chains and large loops in the amorphous. This approach helps to understand the melting behavior of polymers forming folded-chain crystals. It enables the cyclic and large loops in the amorphous. This approach helps to understand the melting behavior of polymers forming folded-chain crystals. It enables the cyclic and folded ultra-long alkanes to serve as model substances for the folded-chain crystals of polyethylene without further assuptions concerning the surface energy and fits all findings smoothly into one picture.
机译:通用的吉布斯-汤姆森方程广泛用于解释层状晶体的熔化特性,它基于给定的熔化热,给定的表面自由能和晶体的尺寸(厚度)。与晶体厚度相比,利用该方程式无法解释环状烷烃和超高摩尔质量聚乙烯(UHMMPE)的极高熔融温度。从链分子的焓和熵的增量组成出发,提出了另一种热力学方法,用于吉布斯-汤姆森方程。它描述了线性,折叠和环状烷烃的(层状)晶体以及UHMMPE的熔融温度,它们全部形成相同晶格类型的晶体,仅具有一组参数。必需变量是结合到微晶中的各个分子的CH_2-基团的数目,而不是其厚度。如果我们假设熔化过程是由构象动力学引起的,那么这可能会得到解释,这种动力学进一步限制了链运动中所涉及的更多CH_2-基团的数量。在一定厚度的层状晶体中,环状烷烃比正构烷烃“感觉”更长,而具有相邻或紧密折叠的线性分子比在无定形中具有随机分布的链和大环的分子感觉更长。这种方法有助于了解形成折叠链晶体的聚合物的熔融行为。它使非晶态中的循环和大循环成为可能。这种方法有助于了解形成折叠链晶体的聚合物的熔融行为。它使环状和折叠的超长链烷烃可以用作聚乙烯的折叠链晶体的模型物质,而无需进一步考虑表面能,并且将所有发现平稳地拟合到一张图片中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号