...
首页> 外文期刊>Ultramicroscopy >Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices
【24h】

Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices

机译:结合单细胞AFM操作和TIRFM探测多层纤维蛋白原基质的分子稳定性

获取原文
获取原文并翻译 | 示例

摘要

Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin-fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEK WT cells. The results suggest that the integrin Mac-1 -fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition.
机译:纤维蛋白原在各种表面上的吸附产生了纳米级的多层基质,该基质大大降低了血小板和白细胞的粘附力,从而影响了生物材料的止血和血液相容性。纤维蛋白原基质的非粘附特性是基于它们的可扩展性,因此无法通过细胞整联蛋白来转导强大的机械力并导致微弱的细胞内信号传导。另外,降低的细胞粘附可能是由于基质表层中纤维蛋白原分子之间较弱的缔合引起的。这种降低的稳定性将允许整联蛋白以与破坏整联蛋白-纤维蛋白原键所需的力相当或更小的力将纤维蛋白原分子从基质中拉出。为了检验这种可能性,我们开发了一种基于全内反射荧光显微镜,原子力显微镜的单细胞操作和微接触印刷相结合的方法,以研究纤维蛋白原分子从基质向细胞的转移。我们计算了野生型HEK 293(HEK WT)和表达白细胞整合蛋白Mac-1(HEK Mac-1)的HEK 293细胞与荧光标记的纤维蛋白原的多层基质接触前后的平均每像素荧光强度。对于500 s的接触时间,HEK Mac-1细胞显示荧光强度的中值增加了57%,而HEK WT细胞为6%。结果表明在基质的表层中,整合素Mac-1-纤维蛋白原的相互作用比分子间纤维蛋白原的相互作用更强。多层纤维蛋白原表面的低机械稳定性可能有助于降低纤维蛋白原涂覆的基材的细胞粘附性能。我们期望所描述的方法可以应用于各种细胞类型,以检查它们的整合素介导的对具有可变蛋白组成的细胞外基质的粘附。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号