首页> 外文期刊>Chemistry: A European journal >Mechanism, Regioselectivity, and the Kinetics of Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electron-Deficient Alkenes
【24h】

Mechanism, Regioselectivity, and the Kinetics of Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electron-Deficient Alkenes

机译:膦酸酯和缺电子烯烃的膦催化[3 + 2]环加成反应的机理,区域选择性和动力学

获取原文
获取原文并翻译 | 示例
           

摘要

With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes:1) In situ generation of a 1,3- dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) awater-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3- dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the ratedetermining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes.DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3- dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.
机译:借助计算和实验,研究了烯丙酸酯和缺电子烯烃的膦催化[3 + 2]环加成反应的详细机理。已发现该反应包括四个连续的过程:1)从脲基甲酸酯和膦原位生成1,3-偶极子; 2)逐步[3 + 2]环加成; 3)水催化的[1,2]-氢转移,和4)消除膦催化剂。 1,3-偶极子的原位生成是所有亲核膦催化的反应的关键。通过动力学研究,我们发现,1,3-偶极子的生成是膦催化烯丙酸酯和缺电子烯烃的[3 + 2]环加成反应的确定步骤。DFT计算和FMO分析表明,电子丙二烯中需要有-吸氢基团以确保在动力学和热力学上生成1,3-偶极。分子中的原子(AIM)理论用于分析1,3-偶极子的稳定性。 FMO和AIM理论可以很好地合理化[3 + 2]环加成反应的区域选择性。同位素标记实验与DFT计算相结合表明,应将普遍接受的分子内[1,2]质子位移校正为水催化的[1,2]质子位移。烯丙酸酯和缺电子亚胺的杂[3 + 2]环加成反应的其他同位素标记实验进一步支持了这一发现。这项研究还扩展到膦作为3碳合成子的膦酸酯催化的[3 + 2]环加成反应的研究,该研究表明该反应中1,3-偶极子的产生也由水引起-催化过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号