首页> 外文期刊>Quarterly Journal of the Royal Meteorological Society >Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model
【24h】

Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model

机译:改进的用于高维变分反演的分析误差协方差矩阵:在使用3D大气传输模型的源估计中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Variational methods are widely used to solve geophysical inverse problems. Although gradient-based minimization algorithms are available for high-dimensional problems (dimension >10(6)), they do not provide an estimate of the errors in the optimal solution. In this study, we assess the performance of several numerical methods to approximate the analysis-error covariance matrix, assuming reasonably linear models. The evaluation is performed for a CO2 flux estimation problem using synthetic remote-sensing observations of CO2 columns. A low-dimensional experiment is considered in order to compare the analysis error approximations to a full-rank finite-difference inverse Hessian estimate, followed by a realistic high-dimensional application. Two stochastic approaches, a Monte-Carlo simulation and a method based on random gradients of the cost function, produced analysis error variances with a relative error 10%. The long-distance error correlations due to sampling noise are significantly less pronounced for the gradient-based randomization, which is also particularly attractive when implemented in parallel. Deterministic evaluations of the inverse Hessian using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm are also tested. While existing BFGS preconditioning techniques yield poor approximations of the error variances (relative error >120%), a new preconditioner that efficiently accumulates information on the diagonal of the inverse Hessian dramatically improves the results (relative error 50%). Furthermore, performing several cycles of the BFGS algorithm using the same gradient and vector pairs enhances its performance (relative error 30%) and is necessary to obtain convergence. Leveraging those findings, we proposed a BFGS hybrid approach which combines the new preconditioner with several BFGS cycles using information from a few (3-5) Monte-Carlo simulations. Its performance is comparable to the stochastic approximations for the low-dimensional case, while good scalability is obtained for the high-dimensional experiment. Potential applications of these new BFGS methods range from characterizing the information content of high-dimensional inverse problems to improving the convergence rate of current minimization algorithms.
机译:变分方法被广泛用于解决地球物理反问题。尽管基于梯度的最小化算法可用于高维问题(尺寸> 10(6)),但它们无法提供最佳解决方案中的误差估计。在这项研究中,我们假设合理的线性模型,评估了几种数值方法的性能,以近似分析误差协方差矩阵。使用CO2色谱柱的合成遥感观测结果对CO2流量估算问题进行了评估。为了比较分析误差近似值与全秩有限差分逆Hessian估计值,考虑了低维实验,然后进行了实际的高维应用。两种随机方法,即蒙特卡洛模拟和基于成本函数随机梯度的方法,产生了分析误差方差,相对误差<10%。对于基于梯度的随机化,由于采样噪声引起的长距离误差相关性明显不足,当并行实现时,这也特别有吸引力。还测试了使用Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法对逆黑森州的确定性评估。尽管现有的BFGS预处理技术产生的误差方差近似值较差(相对误差> 120%),但新的预处理器可以有效地累积逆黑森州对角线上的信息,从而大大改善了结果(相对误差<50%)。此外,使用相同的梯度和向量对执行BFGS算法的多个循环可增强其性能(相对误差<30%),并且对于获得收敛是必需的。利用这些发现,我们提出了一种BFGS混合方法,该方法使用来自(3-5)蒙特卡洛模拟的信息将新的预处理器与多个BFGS循环结合在一起。它的性能与低维情况下的随机近似值相当,而高维实验则具有良好的可伸缩性。这些新的BFGS方法的潜在应用范围从表征高维逆问题的信息内容到提高当前最小化算法的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号