首页> 外文期刊>Progress in Neurobiology: An International Review Journal >Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly.
【24h】

Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly.

机译:将耳朵连接到大脑:听觉回路装配的分子机制。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.
机译:我们的听觉依赖于精确组织的电路,这些电路使我们能够感知,感知和响应环境中的复杂声音,从音乐,语言到简单的警告信号。听觉处理始于内耳的耳蜗,在此,声音由感觉性毛细胞检测到,然后由螺旋神经节神经元传递到中枢神经系统,该神经节神经元忠实地保留了每种刺激的频率,强度和时机。在听觉回路的组装过程中,螺旋神经节神经元建立了精确的连接,将耳蜗中的毛细胞连接到听觉脑干中的目标神经元,形成了特定的发射特性,并在外周和中枢神经系统中形成了异常的突触。了解螺旋神经节神经元如何获得这些独特的特性是听觉神经科学的一个关键目标,因为这些神经元代表了听觉信息向大脑的唯一输入。此外,目前针对多种耳聋的最佳治疗方法是人工耳蜗,可通过直接刺激听觉神经来补偿失去的毛细胞功能。从历史上看,由于内耳小巧且难以接近,对听觉系统的研究落后于其他感觉系统。随着新的分子遗传学工具的出现,这种差距正在缩小。在这里,我们总结了对指导螺旋神经节神经元发展的细胞和分子线索的最新见解,从它们起源于耳小泡的神经感觉区域到专门突触的形成,这些突触可确保声音信息从耳朵快速可靠地传输到大脑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号