...
首页> 外文期刊>Protein engineering design & selection: PEDS >Structure-based engineering of a monoclonal antibody for improved solubility.
【24h】

Structure-based engineering of a monoclonal antibody for improved solubility.

机译:基于结构的单克隆抗体工程设计,可提高溶解度。

获取原文
获取原文并翻译 | 示例
           

摘要

Protein aggregation is of great concern to pharmaceutical formulations and has been implicated in several diseases. We engineered an anti-IL-13 monoclonal antibody CNTO607 for improved solubility. Three structure-based engineering approaches were employed in this study: (i) modifying the isoelectric point (pI), (ii) decreasing the overall surface hydrophobicity and (iii) re-introducing an N-linked carbohydrate moiety within a complementarity-determining region (CDR) sequence. A mutant was identified with a modified pI that had a 2-fold improvement in solubility while retaining the binding affinity to IL-13. Several mutants with decreased overall surface hydrophobicity also showed moderately improved solubility while maintaining a similar antigen affinity. Structural studies combined with mutagenesis data identified an aggregation 'hot spot' in heavy-chain CDR3 (H-CDR3) that contains three residues ((99)FHW(100a)). The same residues, however, were found to be essential for high affinity binding to IL-13. On the basis of the spatial proximity and germline sequence, we reintroduced the consensus N-glycosylation site in H-CDR2 which was found in the original antibody, anticipating that the carbohydrate moiety would shield the aggregation 'hot spot' in H-CDR3 while not interfering with antigen binding. Peptide mapping and mass spectrometric analysis revealed that the N-glycosylation site was generally occupied. This variant showed greatly improved solubility and bound to IL-13 with affinity similar to CNTO607 without the N-linked carbohydrate. All three engineering approaches led to improved solubility and adding an N-linked carbohydrate to the CDR was the most effective route for enhancing the solubility of CNTO607.
机译:蛋白质聚集是药物制剂中非常关注的问题,并且与多种疾病有关。我们设计了抗IL-13单克隆抗体CNTO607以提高溶解度。在这项研究中使用了三种基于结构的工程方法:(i)改变等电点(pI),(ii)降低整体表面疏水性,以及(iii)在互补性决定区内重新引入N-连接的碳水化合物部分(CDR)序列。鉴定出具有修饰的pI的突变体,其在保持与IL-13的结合亲和力的同时溶解度提高了2倍。总表面疏水性降低的几个突变体也显示出适度改善的溶解度,同时保持相似的抗原亲和力。结构研究与诱变数据相结合,在包含三个残基的重链CDR3(H-CDR3)中确定了一个聚集“热点”((99)FHW(100a))。然而,发现相同残基对于与IL-13的高亲和力结合是必不可少的。基于空间邻近性和种系序列,我们重新引入了原始抗体中发现的H-CDR2中的共有N-糖基化位点,预计碳水化合物部分将屏蔽H-CDR3中的聚集“热点”,而不会干扰抗原结合。肽图分析和质谱分析表明,N-糖基化位点通常被占据。该变体显示出大大改善的溶解度并且以类似于CNTO607的亲和力与IL-13结合,而没有N-连接的碳水化合物。所有这三种工程方法均导致溶解度提高,并且向CDR添加N-连接的碳水化合物是增强CNTO607溶解度的最有效途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号