首页> 外文期刊>Proteins: Structure, Function, and Genetics >Influence of pressure on the low-frequency vibrational modes of lysozyme and water: A complementary inelastic neutron scattering and molecular dynamics simulation study
【24h】

Influence of pressure on the low-frequency vibrational modes of lysozyme and water: A complementary inelastic neutron scattering and molecular dynamics simulation study

机译:压力对溶菌酶和水的低频振动模式的影响:互补的非弹性中子散射和分子动力学模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

We performed complementary inelastic neutron scattering (INS) experiments and molecular dynamics (MD) simulations to study the influence of pressure on the low-frequency vibrational modes of lysozyme in aqueous solution in the 1 atm-6 kbar range. Increasing pressure induces a high-frequency shift of the low-frequency part (10 meV = 80 cm-1) of the vibrational density of states (VDOS), g(ω), of both lysozyme and water that reveals a stiffening of the interactions ascribed to the reduction of the protein and water volumes. Accordingly, high pressures increase the curvature of the free energy profiles of the protein quasiharmonic vibrational modes. Furthermore, the nonlinear influence of pressure on the g(ω) of lysozyme indicates a change of protein dynamics that reflects the nonlinear pressure dependence of the protein compressibility. An analogous dynamical change is observed for water and stems from the distortion of its tetrahedral structure under pressure. Moreover, our study reveals that the structural, dynamical, and vibrational properties of the hydration water of lysozyme are less sensitive to pressure than those of bulk water, thereby evidencing the strong influence of the protein surface on hydration water.
机译:我们进行了互补的非弹性中子散射(INS)实验和分子动力学(MD)模拟,以研究压力对1 atm-6 kbar范围内水溶液中溶菌酶的低频振动模式的影响。压力增加会引起溶菌酶和水的状态振动密度(VDOS)g(ω)的低频部分(<10 meV = 80 cm-1)发生高频位移,从而显示出硬化现象。相互作用归因于蛋白质和水量的减少。因此,高压增加了蛋白质准谐波振动模式的自由能曲线的曲率。此外,压力对溶菌酶g(ω)的非线性影响表明蛋白质动力学的变化,反映了蛋白质可压缩性的非线性压力依赖性。观察到水有类似的动态变化,这是由于水在压力下其四面体结构变形所致。此外,我们的研究表明,溶菌酶水合水的结构,动力学和振动特性不如散装水对压力敏感,从而证明了蛋白质表面对水合水的强烈影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号