...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction
【24h】

Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction

机译:优化的基于距离的原子对的潜在DOOP,用于蛋白质结构预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 angstrom interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/. . Proteins 2015; 83:881-890. (c) 2015 Wiley Periodicals, Inc.
机译:用于蛋白质结构预测的基于Docking诱饵的最佳势能(DOOP)能量函数基于经验距离相关的原子对相互作用。为了优化原子对相互作用,天然蛋白质结构被分解成多肽链段,该多肽链段对应于涉及完整二级结构元素的结构动机。它们构成了天然的配体-受体系统(或仅对)。因此,从954种选择的蛋白质制备了总共8609个配体-受体系统。对于这些假设的配体-受体系统中的每一个,均使用之前用于蛋白质-蛋白质对接的方法生成了具有0-10埃界面均方根偏差(iRMSD)的1000个均匀采样的对接诱饵。应用基于神经网络的优化方法来使用这些诱饵导出优化的能量参数,以使能量函数模仿漏斗状的能量格局,从而实现这些假设的配体-受体系统之间的相互作用。因此,我们的方法对天然蛋白质结构的总体漏斗状能量格局进行了分层建模。在天然蛋白质结构识别的几种常用诱饵组上测试了所得的能量函数,并将其与其他统计潜力进行了比较。结合描述局部构象偏好的潜在扭力术语,基于原子对的潜力在各种诱饵集的天然蛋白质结构正确排名中胜过其他报道的统计能量函数。尽管最具挑战性的ROSETTA诱饵组并没有明确考虑侧链的方向依赖性,但对于这种情况尤其如此。可通过http://agknapp.chemie.fu-berlin.de/doop/免费获得用于蛋白质结构预测的DOOP能量函数,具有假设的配体-受体系统的蛋白质结构的基础数据库及其诱饵。 。蛋白质2015; 83:881-890。 (c)2015年威利期刊有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号