首页> 外文学位 >Optimizing potentials for protein structure prediction, inverse protein folding and protein folding.
【24h】

Optimizing potentials for protein structure prediction, inverse protein folding and protein folding.

机译:用于蛋白质结构预测,反向蛋白质折叠和蛋白质折叠的最佳潜力。

获取原文
获取原文并翻译 | 示例

摘要

Under appropriate physiological conditions, proteins fold into their biologically active native conformation. This dissertation has touched upon two problems related to protein folding: the protein structure prediction problem and the protein folding problem.;An accurate potential is the key to success in the protein structure prediction problem. For a single protein, the potential function can be optimized for predictive success by maximizing the energy gap between the correct structure and the ensemble of random structures relative to the distribution of the energies of these random structures (Z-score). Different averaging procedures have been proposed to deal with an ensemble of database proteins. Here a new approach, maximizing the average probability of success, is demonstrated to carry out this task. Even though the optimized potentials perform better than previously-used averaging procedures, the results show that the Z-score based optimization methods tend to underestimate the repulsive interactions due to an inherent tendency to over-stabilize the high-energy states. To lessen the bias, the distribution is weighted to suppress the high-energy state contribution to the Z-score calculation. Using a lattice model, the improved optimal potentials are both more accurate and more successful in predicting protein structures than those obtained by all other previous potential derivation on methods.;An alternative to protein structure prediction is the related "inverse protein folding" where one identifies the sequences in the database that fold into a given structure. Here a non-physical potential scheme is developed to optimize for this purpose. Using a lattice model of proteins, it is shown that the optimal potentials actually work better than the real potential.;To address the protein folding problem, protein folding has been modeled as diffusion on a free-energy landscape. This allows the diffusion equation to be used to study the impact of energy parameters on the folding dynamics. For marginally stable proteins, fastest folding is achieved when the non-specific interactions favoring compaction are strong, resulting in a high folding temperature. Such proteins fold by rapid collapse followed by slower accumulation of correct contacts.
机译:在适当的生理条件下,蛋白质会折叠成具有生物活性的天然构象。本论文涉及了与蛋白质折叠有关的两个问题:蛋白质结构预测问题和蛋白质折叠问题。准确的潜力是蛋白质结构预测问题成功的关键。对于单个蛋白质,可以通过最大化正确结构和随机结构整体之间的能隙(相对于这些随机结构的能量分布)来优化潜在功能,以实现预测成功。已经提出了不同的平均程序来处理数据库蛋白质的整体。这里展示了一种最大化平均成功概率的新方法来执行此任务。尽管优化的电势比以前使用的平均程序执行得更好,但结果表明,基于Z分数的优化方法由于固有的过度稳定高能态的趋势而倾向于低估排斥性相互作用。为了减小偏差,对分布进行加权以抑制高能态对Z分数计算的贡献。使用晶格模型,改进的最佳电势比通过所有其他先前的电势推导方法获得的电势更准确,并且更成功地预测蛋白质结构。;蛋白质结构预测的替代方法是相关的“反向蛋白质折叠”,其中一个可以识别数据库中折叠成给定结构的序列。为此,开发了一种非物理电位方案来进行优化。使用蛋白质的晶格模型,表明最佳电位实际上比实际电位更好。;为解决蛋白质折叠问题,蛋白质折叠已被建模为在自由能景观上的扩散。这允许使用扩散方程来研究能量参数对折叠动力学的影响。对于边缘稳定的蛋白质,当有利于压实的非特异性相互作用很强时,可实现最快的折叠,从而导致较高的折叠温度。此类蛋白质会因快速崩溃而折叠,然后缓慢累积正确的接触。

著录项

  • 作者

    Chiu, Ting-Lan.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Physical.;Biophysics General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号