...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Drug block of the hERG potassium channel: insight from modeling.
【24h】

Drug block of the hERG potassium channel: insight from modeling.

机译:hERG钾通道的药物阻滞:来自建模的见解。

获取原文
获取原文并翻译 | 示例

摘要

Many commonly used, structurally diverse, drugs block the human ether-a-go-go-related gene (hERG) K(+) channel to cause acquired long QT syndrome, which can lead to sudden death via lethal cardiac arrhythmias. This undesirable side effect is a major hurdle in the development of safe drugs. To gain insight about the structure of hERG and the nature of drug block we have produced structural models of the channel pore domain, into each of which we have docked a set of 20 hERG blockers. In the absence of an experimentally determined three-dimensional structure of hERG, each of the models was validated against site-directed mutagenesis data. First, hERG models were produced of the open and closed channel states, based on homology with the prokaryotic K(+) channel crystal structures. The modeled complexes were in partial agreement with the mutagenesis data. To improve agreement with mutagenesis data, a KcsA-based model was refined by rotating the four copies of the S6 transmembrane helix half a residue position toward the C-terminus, so as to place all residues known to be involved in drug binding in positions lining the central cavity. This model produces complexes that are consistent with mutagenesis data for smaller, but not larger, ligands. Larger ligands could be accommodated following refinement of this model by enlarging the cavity using the inherent flexibility about the glycine hinge (Gly648) in S6, to produce results consistent with the experimental data for the majority of ligands tested.
机译:许多常用的,结构多样的药物会阻断人类与人类移动相关的基因(hERG)K(+)通道,导致获得性长QT综合征,这可能导致致命性心律失常导致猝死。这种不良的副作用是开发安全药物的主要障碍。为了深入了解hERG的结构和药物阻滞的性质,我们生成了通道孔结构域的结构模型,在每个模型中我们都对接了20种hERG阻滞剂。在没有实验确定的hERG三维结构的情况下,针对定点诱变数据对每个模型进行了验证。首先,基于与原核K(+)通道晶体结构的同源性,产生了打开和关闭通道状态的hERG模型。建模的复合物与诱变数据部分一致。为了提高与诱变数据的一致性,通过将四个拷贝的S6跨膜螺旋向C端半个残基位置旋转,从而改进了基于KcsA的模型,从而将已知参与药物结合的所有残基都放在衬里位置中央腔。该模型产生的复合物与较小但不是较大配体的诱变数据一致。通过使用S6中有关甘氨酸铰链(Gly648)的固有柔性来扩大空腔,可以适应此模型的改进,从而容纳更大的配体,以产生与大多数被测配体的实验数据相符的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号