...
首页> 外文期刊>Progress in retinal and eye research >Genetic and epigenetic mechanisms of gene regulation during lens development.
【24h】

Genetic and epigenetic mechanisms of gene regulation during lens development.

机译:晶状体发育过程中基因调控的遗传和表观遗传机制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naive ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
机译:最近的研究表明,在晶状体发育过程中,染色质结构,基因表达,细胞外信号传导和细胞分化之间存在许多联系。晶状体祖细胞起源于普通祖细胞库,即斑前前区(PPR),该区域由神经板,幼稚外胚层和中胚层之间的细胞外信号传导结合而成。晶状体程序在其他选择上的特定承诺,例如形成嗅觉上皮或垂体前叶,是通过增厚的表面外胚层(晶状体基板)来体现的。小鼠晶状体祖细胞的特征在于受FGF和BMP信号控制的晶状体谱系特异性转录因子(包括Pax6,Six3和Sox2)的补体表达,随后表达c-Maf,Mab21like1,Prox1和FoxE3。晶状体祖细胞的增殖及其形态发生运动导致晶状体囊泡的形成。这种由晶状体前体细胞组成的瞬态结构被极化,其前部细胞保留了它们的上皮形态和增殖能力,而后晶状体前体细胞则开始形成终末分化,形成初级晶状体纤维。晶状体和其他结构蛋白的表达和积累标志着晶状体的分化。结晶蛋白基因的转录控制的特征在于,反复使用建立透镜前体所需的转录因子与更普遍表达的因子(例如AP-1,AP-2alpha,CREB和USF)结合使用,并募集组蛋白乙酰转移酶(HATs) CBP和p300,以及染色质重塑复合物SWI / SNF和ISWI。这些研究将晶状体发育的研究摆在了研究发展,细胞信号转导,基因转录和染色质重塑之间联系的最前沿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号