首页> 外文期刊>Progress in Organic Coatings: An International Review Journal >Organic-inorganic hybrid coatings prepared from glycidyl carbamate resins and amino-functional silanes
【24h】

Organic-inorganic hybrid coatings prepared from glycidyl carbamate resins and amino-functional silanes

机译:由氨基甲酸缩水甘油酯树脂和氨基官能硅烷制备的有机-无机杂化涂料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Organic-inorganic hybrid Coatings were prepared from glycidyl carbamate (GC) functional oligomers and different amino-functional trimethoxysilanes via a systematic three-step reaction process. Initially, glycidyl carbamate functional oligomers isocyanurate glycidyl carbamate (IGC) and biuret glycidyl carbamate (BGC) were synthesized from the reaction of the polyisocyanurate of hexamethylene diisocyanate (HDT) with glycidol and the biuret adduct of hexamethylene diisocyanate (HDB) with glycidol, respectively. Then, the GC resins were mixed with 3-aminopropyl trimethoxysilane (APTMES). N-(2-aminoethyl) 3-aminopropyl trimethoxysilane (AEAPTMES) and p-aminocyclohexyl methane (PACM) at different stoichiometric ratios. In order to form the hybrid organic-inorganic networks, the materials were Cured either at room temperature and humidity for more than 20 days or with an additional heat treatment at 80 C for I h and then keeping the coatings at room temperature and humidity for more than 10 days. The observable change in the Structure during network formation was monitored by FTIR spectroscopy. The cured coatings were characterized by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Atomic force microscopy (AFM) was used to characterize the Surface Properties of the hybrid systems. AFM observation suggests the phase separation behavior. Coating properties such as Konig pendulum hardness, crosshatch adhesion, MEK double rub resistance and water contact angle of the coatings were also evaluated. Finally. structure-property relationships are given based on the variable parameters used.
机译:通过氨基甲酸缩水甘油酯(GC)功能低聚物和不同的氨基功能三甲氧基硅烷,通过系统的三步反应过程,制备了有机-无机杂化涂料。最初,由六亚甲基二异氰酸酯(HDT)的多异氰脲酸酯与缩水甘油的反应以及六亚甲基二异氰酸酯(HDB)与缩二脲的缩二脲加合物的反应合成了氨基甲酸缩水甘油酯官能低聚物异氰脲酸酯缩水甘油氨基甲酸酯(IGC)和缩二脲缩水甘油氨基甲酸酯(BGC)。然后,将GC树脂与3-氨基丙基三甲氧基硅烷(APTMES)混合。 N-(2-氨基乙基)3-氨基丙基三甲氧基硅烷(AEAPTMES)和对氨基环己基甲烷(PACM)的化学计量比不同。为了形成有机-无机杂化网络,将材料在室温和湿度下固化20天以上,或在80°C下进行额外的热处理1小时,然后将涂层在室温和湿度下固化更多。超过10天。通过FTIR光谱监测网络形成期间结构的可观察到的变化。固化的涂层通过热重分析(TGA)和差示扫描量热法(DSC)进行表征。原子力显微镜(AFM)用于表征混合系统的表面特性。原子力显微镜的观察表明相分离行为。还评估了涂层性能,例如Konig摆锤硬度,划格法附着力,MEK耐双擦性和涂层的水接触角。最后。基于所使用的可变参数,给出了结构-属性关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号