首页> 外文期刊>Biomechanics and modeling in mechanobiology >Semi-stochastic cell-level computational modeling of the immune system response to bacterial infections and the effects of antibiotics
【24h】

Semi-stochastic cell-level computational modeling of the immune system response to bacterial infections and the effects of antibiotics

机译:免疫系统对细菌感染和抗生素作用的反应的半随机细胞水平计算模型

获取原文
获取原文并翻译 | 示例
           

摘要

A mathematical model for the immune system response to bacterial infections is proposed. The formalism is based on modeling the chemokine-determined transmigration of leukocytes from a venule through the venule walls and the subsequent in-tissuemigration and engulfment of the pathogens that are responsible for the infection. The model is based on basic principles, such as Poiseuille blood flow through the venule, fundamental solutions of the diffusion– reaction equation for the concentration field of pathogenreleased chemokines, linear chemotaxis of the leukocytes, random walk of pathogens, and stochastic processes for the death and division of pathogens. Thereby, a computationally tractable and, as far as we know, original framework has been obtained, which is used to incorporate the interaction of a substantial number of leukocytes and thereby to unravel the significance of biological processes and parameters regarding the immune system response. The developed model provides a neat way for visualization of the biophysical mechanism of the immune system response. The simulations indicate a weak correlation between the immune system response in terms of bacterial clearing time and the leukocyte stiffness, and a significant decrease in the clearing time with increasing in-blood leukocyte density, decreasing pathogen motility, and increasing venule wall transmissivity. Finally, the increase in the pathogen death rate and decrease in pathogen motility induce a decrease in the clearing time of the infection. The adjustment of the latter two quantities mimic the administration of antibiotics.
机译:提出了针对细菌感染的免疫系统反应的数学模型。形式主义基于对趋化因子确定的白细胞从小静脉穿过小静脉壁的迁移以及随后引起感染的病原体的组织内迁移和吞噬的建模。该模型基于基本原理,例如:Poiseuille穿过小静脉的血流,扩散-病原体释放的趋化因子浓度场的反应方程式的基本解,白细胞的线性趋化性,病原体的随机游动以及死亡的随机过程和病原体的划分。从而,获得了在计算上易于处理并且据我们所知的原始框架,该框架被用于结合大量白细胞的相互作用,从而揭示关于免疫系统应答的生物学过程和参数的重要性。所开发的模型为免疫系统反应的生物物理机制的可视化提供了一种巧妙的方法。该模拟表明,根据细菌清除时间和白细胞硬度,免疫系统反应之间的相关性较弱;随着血液中白细胞密度的增加,病原体运动性的降低和小静脉壁的透射率的提高,清除时间的显着减少。最后,病原体死亡率的增加和病原体运动性的降低导致感染清除时间的减少。后两个量的调整模拟了抗生素的施用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号