...
首页> 外文期刊>Biomechanics and modeling in mechanobiology >Steady flow through a constricted cylinder by multiparticle collision dynamics
【24h】

Steady flow through a constricted cylinder by multiparticle collision dynamics

机译:多粒子碰撞动力学在狭窄圆柱体中稳定流动

获取原文
获取原文并翻译 | 示例
           

摘要

The flow characterization of blood through healthy and diseased flow geometries is of interest to researchers and clinicians alike, as it may allow for early detection, and monitoring, of cardiovascular disease. In this paper, we use a numerically efficient particle-based flow model called multiparticle collision dynamics (MPC for short) to study the effect of compressibility and slip of flow of a Newtonian fluid through a cylinder with a local constriction. We use a cumulative averaging method to compare our MPC results to the finite-element solution of the incompressible no-slip Navier-Stokes equations in the same geometry. We concentrate on low Reynolds number flows [ Re in (4,30) ] and quantify important differences observed between the MPC results and the Navier-Stokes solution in constricted geometries. In particular, our results show that upstream recirculating zones can form with the inclusion of slip and compressibility, which are not observed in the flow of an incompressible Newtonian fluid using the no-slip assumption, but have been observed experimentally for blood. Important flow features are also presented that could be used as indicators to observe compressibility and slip in experimental data where near-wall data may be difficult to obtain. Finally, we found that the cumulative averaging method used is ideal for steady particle-based flow methods, as macroscopic no-slip is readily obtained using the MPC bounce-back rule. Generally, a small spurious slip is seen using other averaging methods such as weighted spatial averages or averages over several runs, and the bounce-back rule has to be modified so as to achieve macroscopic no-slip. No modifications of the bounce-back rule were required for our simulations.
机译:研究人员和临床医生都对通过健康和患病的血液几何结构进行的血液流动特征感兴趣,因为它可以早日发现和监测心血管疾病。在本文中,我们使用一种称为数值有效的基于粒子的流动模型,称为多粒子碰撞动力学(简称MPC),研究牛顿流体通过具有局部收缩的圆柱体时的可压缩性和流动滑移的影响。我们使用累积平均法将我们的MPC结果与相同几何中不可压缩的防滑Navier-Stokes方程的有限元解进行比较。我们专注于低雷诺数流[Re in(4,30)]并量化MPC结果与狭窄几何中的Navier-Stokes解决方案之间观察到的重要差异。特别是,我们的结果表明,上游回流区域可以形成滑动和可压缩性,使用无滑动假设在不可压缩牛顿流体的流动中未观察到这些现象,但在血液中已通过实验观察到了这些现象。还提出了重要的流动特征,可以用作指示剂,以观察可能难以获得近壁数据的实验数据中的可压缩性和滑移。最后,我们发现使用累积平均法是基于稳定粒子的流动方法的理想选择,因为使用MPC反弹规则很容易获得宏观防滑。通常,使用其他平均方法(例如加权空间平均值或几次运行的平均值)会看到较小的虚假滑动,并且必须修改反跳规则以实现宏观的无滑动。对于我们的仿真,不需要修改反跳规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号