首页> 外文期刊>Biomechanics and modeling in mechanobiology >The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach
【24h】

The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach

机译:通过计算重塑方法预测的筛板和周围乳突巩膜中的胶原纤维结构

获取原文
获取原文并翻译 | 示例
           

摘要

The biomechanics of the optic nerve head is assumed to play an important role in ganglion cell loss in glaucoma. Organized collagen fibrils form complex networks that introduce strong anisotropic and nonlinear attributes into the constitutive response of the peripapillary sclera (PPS) and lamina cribrosa (LC) dominating the biomechanics of the optic nerve head. The recently presented computational remodeling approach (Grytz and Meschke in Biomech Model Mechanobiol 9:225-235, 2010) was used to predict the micro-architecture in the LC and PPS, and to investigate its impact on intraocular pressure-related deformations. The mechanical properties of the LC and PPS were derived from a microstructure-oriented constitutive model that included the stretch-dependent stiffening and the statistically distributed orientations of the collagen fibrils. Biomechanically induced adaptation of the local micro-architecture was captured by allowing collagen fibrils to be reoriented in response to the intraocular pressure-related loading conditions. In agreement with experimental observations, the remodeling algorithm predicted the existence of an annulus of fibrils around the scleral canal in the PPS, and a predominant radial orientation of fibrils in the periphery of the LC. The peripapillary annulus significantly reduced the intraocular pressure-related expansion of the scleral canal and shielded the LC from high tensile stresses. The radial oriented fibrils in the LC periphery reinforced the LC against transversal shear stresses and reduced LC bending deformations. The numerical approach presents a novel and reasonable biomechanical explanation of the spatial orientation of fibrillar collagen in the optic nerve head.
机译:假定视神经乳头的生物力学在青光眼的神经节细胞丢失中起重要作用。有组织的胶原蛋白原纤维形成复杂的网络,这些网络将强各向异性和非线性属性引入到支配视神经乳头生物力学的周乳突巩膜(PPS)和筛板(LC)的本构反应中。最近提出的计算重塑方法(Grytz和Meschke in Biomech Model Mechanobiol 9:225-235,2010)用于预测LC和PPS中的微体系结构,并研究其对眼压相关变形的影响。 LC和PPS的机械性能源自面向微观结构的本构模型,该模型包括与拉伸相关的硬化和胶原纤维的统计分布方向。通过使胶原纤维响应眼内压力相关的负荷条件而重新定向,从而捕获了生物力学诱导的局部微结构的适应性。与实验观察结果一致,重塑算法预测了PPS巩膜管周围存在原纤维环,以及LC周围原纤维的主要径向方向。乳头周环显着减少了与眼内压有关的巩膜管扩张,并使LC免受高拉应力的影响。 LC外围的径向原纤维增强了LC抵抗横向剪切应力并减少了LC弯曲变形。数值方法为视神经乳头中的原纤维胶原蛋白的空间取向提供了一种新颖而合理的生物力学解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号