...
首页> 外文期刊>Plasma Sources Science & Technology >Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion
【24h】

Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion

机译:交叉电场和磁场中用于电推进的离子诊断

获取原文
获取原文并翻译 | 示例

摘要

The velocity distribution function (VDF) of metastable Xe~+ ions was measured along the channel centerline of the high-power PPS~_X000 Hall effect thruster by means of laser induced fluorescence (LIF) spectroscopy at 834.72 nm for various discharge voltages (300-700 V) and propellant mass flow rates (6-15 mg s~(-1)). The development of the on-axis profile of the velocity dispersion reveals the interrelation between ionization and acceleration layers. The ion velocity profiles are in accordance with outcomes of a hybrid numerical model in which the electron mobility is assessed from particle-in-cell simulations. The axial distribution of the effective electric field is inferred from the mean ion velocity profile, despite the parasitic effect due to ions created in the acceleration region. Most of the acceleration process takes place outside the thruster channel. The electric field augments and it moves upstream when the applied voltage is ramped up. The impact of the xenon mass flow rates is found to depend upon the voltage. A novel approach based on the moments of the experimental VDFs in combination with the Boltzmann's equation is introduced in order to determine the real electric field distribution. The method also provides the ionization frequency profile. The LIF diagnostics reveals the existence at the end of the acceleration region of fast ions of which the kinetic energy is above the supplied energy. The fraction of these supra-sped up ions grows when the voltage increases. The ion VDFs were also recorded in the plasma plume far field by way of a retarding potential analyzer (RPA). The shape of the RPA traces as well as their evolution with operating conditions are in agreement with trends observed by means of LIF spectroscopy. Finally, physical mechanisms at the origin of supra-sped up ions are discussed in light of numerical simulation outcomes and a set of new experimental results.
机译:通过在834.72 nm的激光诱导荧光(LIF)光谱下针对各种放电电压(300-300 nm),沿着大功率PPS〜_X000霍尔效应推进器的通道中心线测量亚稳Xe〜+离子的速度分布函数(VDF)。 700 V)和推进剂质量流量(6-15 mg s〜(-1))。速度色散的轴向分布的发展揭示了电离层和加速层之间的相互关系。离子速度曲线与混合数值模型的结果一致,该混合数值模型中的电子迁移率是通过粒子内模拟评估的。从平均离子速度曲线可以推断出有效电场的轴向分布,尽管由于在加速区域中产生的离子而产生了寄生效应。大部分加速过程发生在推进器通道之外。当施加的电压增加时,电场会增强,并且会向上游移动。发现氙质量流率的影响取决于电压。为了确定真实的电场分布,引入了一种基于实验VDF矩和Boltzmann方程的新颖方法。该方法还提供电离频率分布。 LIF诊断揭示了动能高于所提供能量的快离子在加速区域的末端存在。当电压增加时,这些超速增长离子的比例会增加。还通过延迟电势分析仪(RPA)在等离子羽远场中记录了离子VDF。 RPA迹线的形状及其随操作条件的演变与通过LIF光谱法观察到的趋势一致。最后,根据数值模拟结果和一组新的实验结果,讨论了超高速离子起源的物理机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号