...
首页> 外文期刊>Polymer Composites >The influence of cooling rate on the fracture properties of a glass reinforcedylon fiber-metal laminate
【24h】

The influence of cooling rate on the fracture properties of a glass reinforcedylon fiber-metal laminate

机译:冷却速度对玻璃纤维增​​强/尼龙纤维金属层压板断裂性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of varying cooling rate on the microstructure and resulting mechanical properties of a novel fiber-metal laminate (FML) based on a glass fiber-reinforced nylon composite has been investigated. Polished thin sections removed from plain glass fiberylon composites and their corresponding fiber-metal laminates indicated that the prevailing microstructure was strongly dependent on the rate of cooling from the melt. Mode I and Mode II interlaminar fracture tests on the plain glass fiber reinforced nylon aminates indicated that the values of G_(Ic) and G_(IIc) averaged approximately 1100 J/m~2 and 3700 J/m~2 respectively at all cooling rates. The degree of of adhesion between the aluminum alloy and composite substrates was investigated using the single cantilever beam geometry. Here, the measured values of G_c were similar in magnitude to the Mode I interlaminar fracture energy of the composite, tending to increase slightly with increasing cooling rate. The tensile and flexural fracture to increase by between 10% and 20% as the cooling rate was increased by two orders of magnitude. This effect was attributed to over-aging of the aluminum alloy plies at elevated temperature during cooling. Finally, fiber metal laminates based on glass fiberylon composites were shown to exhibit an excellent resistance to low velocity impact loading. Damage, in the form of delamination, fiber fracture, matrix cracking in the composite plies, and plastic deformation and fracture in the aluminum layers, was observed under localized impact loading. Here, the fastcooled fiber metal laminates offered superior post-impact mechanical properties at low and intermediate impact energies, yet very similar results under high impact energies.
机译:研究了变化的冷却速度对基于玻璃纤维增​​强的尼龙复合材料的新型纤维金属层压板(FML)的微观结构和所得机械性能的影响。从普通玻璃纤维/尼龙复合材料及其相应的纤维-金属层压板中去除的抛光薄切片表明,主要的微观结构在很大程度上取决于熔体的冷却速率。在普通玻璃纤维增​​强尼龙胺化物上进行的模式I和模式II层间断裂试验表明,在所有冷却速率下,G_(Ic)和G_(IIc)的平均值分别约为1100 J / m〜2和3700 J / m〜2 。使用单悬臂梁几何结构研究了铝合金和复合材料基底之间的粘附程度。在此,G_c的测量值在大小上与复合材料的I型层间断裂能相似,并随冷却速率的增加而略有增加。随着冷却速率增加两个数量级,拉伸断裂和弯曲断裂将增加10%到20%。该效果归因于铝合金层在冷却期间在高温下的过时效。最后,基于玻璃纤维/尼龙复合材料的纤维金属层压板显示出优异的抗低速冲击载荷性能。在局部冲击载荷下,观察到损坏,包括分层,纤维断裂,复合层中的基体开裂以及铝层中的塑性变形和断裂。在此,快速冷却的纤维金属层压板在低和中等冲击能量下具有卓越的冲击后机械性能,但在高冲击能量下却具有非常相似的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号