首页> 外文期刊>Plant, Cell & Environment >Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves
【24h】

Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves

机译:非稳态,不均匀的蒸腾速率和叶片解剖结构对沿单子叶植物叶片水逐步稳定同位素富集的影响

获取原文
获取原文并翻译 | 示例
       

摘要

This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.
机译:这项研究的重点是沿单子叶植物的蒸腾驱动水同位素富集(Delta(lw))的空间格局。有人提出,这些空间格局是水同位素沿叶脉和叶肉的对流和(反向)扩散竞争作用的结果,但也反映了叶片的几何形状(例如叶长,叶间距离)和不均匀气体交换参数。因此,我们开发了一个同位素叶水富集的二维模型,该模型与以前的模型相比具有新功能,例如木质部中的径向扩散,叶肉中的纵向扩散,不均匀的气体交换参数和非稳态效果。该模型很好地再现了所有已发布的沿单子叶植物叶片的Delta(lw)测量值,除了叶尖处,并且给出了测量值和模型参数的不确定性。我们表明,叶肉中的纵向扩散无法解释观察到的叶尖同位素梯度的减少。我们的研究结果还表明,在C(3)和C(4)植物之间观察到的Delta(lw)差异反映了叶肉弯曲度的更多差异,而不是叶长或茎间距的差异。迄今为止,叶肉的曲折度是最敏感的参数,对于相同植物物种的不同实验需要不同的值。最后,通过对非稳态,空间变化的叶水富集进行新的测量,我们发现空间模式仅在中午左右才处于稳定状态,就像散装叶水富集所观察到的那样,但可以轻松地升至整个叶面,不管它们沿叶的异质程度如何。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号