...
首页> 外文期刊>Chemical Engineering Science >Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs
【24h】

Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs

机译:不同分布器设计的高压鼓泡塔反应器中气液传质

获取原文
获取原文并翻译 | 示例
           

摘要

The gas-liquid mass transfer in a 0.162 m high pressure stainless steel bubble column was investigated using three different gas sparger designs. An oxygen-enriched-air dynamic method and an optical oxygen probe technique were implemented to measure k(1) a values in the bubble column reactor. Using the interfacial area (a) values measured by a four-point optical probe technique at similar conditions (Xue, 2004), the k(1) values were estimated. Axial dispersion model (ADM) and continuous stirred tank reactor (CSTR) model were used to calculate k(1)a as a fitted parameter with the measured data. The ADM gave better fits to the experimental data than the CSTR model, especially at high axial locations for the bubble column used with a large L/d(c) ratio. The sparger design was found to have a noticeable effect on k(1)a in the low gas velocity range (u(g) < 0.15 m/s) but only a slight effect in the high gas velocity range (u(g) > 0.20 m/s). The sparger design showed almost no effect on the liquid side mass transfer coefficient, k(1), at high gas velocity (u(g) = 0.30 m/s), where no significant variations of the bubble size distribution and hydrodynamics were obtained using different sparger designs. Although the k(1)a values increased with the operating pressure, the pressure change from 0.1 to 0.4 MPa yielded lower k(1) values, as a result of the reduced bubble size. However, as the pressure further increased to 1.0 MPa, the a and k(1)a values increased, while the k(1) values negligibly decreased. In addition to the pressure and sparger design effects, the superficial gas velocity had effect of increasing the k(1) values, while such effect became small and flattened out at high superficial gas velocities. (c) 2006 Elsevier Ltd. All rights reserved.
机译:使用三种不同的气体分布器设计研究了0.162 m高压不锈钢鼓泡塔中的气液传质。实施了富氧空气动力学方法和光学氧探针技术来测量鼓泡塔反应器中的k(1)a值。使用在相似条件下通过四点光学探针技术测得的界面面积(a)值(Xue,2004年),估算了k(1)值。使用轴向弥散模型(ADM)和连续搅拌釜反应器(CSTR)模型计算k(1)a作为与测量数据的拟合参数。与CSTR模型相比,ADM对实验数据的拟合更好,尤其是在L / d(c)比大的气泡塔轴向位置较高的情况下。发现分布器设计在低气体速度范围(u(g)<0.15 m / s)中对k(1)a有显着影响,但在高气体速度范围(u(g)> 0.20 m / s)。分布器设计在高气体速度(u(g)= 0.30 m / s)时几乎没有显示出对液侧传质系数k(1)的影响,使用该方法,气泡尺寸分布和流体动力学没有明显变化。不同的喷头设计。尽管k(1)a值随工作压力而增加,但由于气泡尺寸减小,从0.1 MPa到0.4 MPa的压力变化产生了较低的k(1)值。但是,随着压力进一步增加到1.0 MPa,a和k(1)a值增加,而k(1)值可忽略不计。除了压力和喷射器设计效果外,表观气体速度还具有增加k(1)值的作用,而在高表观气体速度下,这种作用变小并趋于平坦。 (c)2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号