...
首页> 外文期刊>Plant Physiology and Biochemistry >Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms
【24h】

Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms

机译:多粘芽孢杆菌BFKC01通过改善根系和激活铁的吸收机制来增强植物对铁的吸收

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Despite the high abundance of iron (Fe) in most earth's soils, Fe is the major limiting factor for plant growth and development due to its low bioavailability. With an increasing recognition that soil microbes play important roles in plant growth, several strains of beneficial rhizobactria have been applied to improve plant nutrient absorption, biomass, and abiotic or biotic stress tolerance. In this study, we report the mechanisms of microbe-induced plant Fe assimilation, in which the plant growth promoting rhizobacteria (PGPR) Paenibacillus polymyxa BFKC01 stimulates plant's Fe acquisition machinery to enhance Fe uptake in Arabidopsis plants. Mechanistic studies show that BFKC01 transcriptionally activates the Fe deficiency-induced transcription factor 1 (FIT1), thereby up-regulating the expression of IRT1 and FRO2. Furthermore, BFKC01 has been found to induce plant systemic responses with the increased transcription of MYB72, and the biosynthetic pathways of phenolic compounds are also activated. Our data reveal that abundant phenolic compounds are detected in root exudation of the BFKC01-inoculated plants, which efficiently facilitate Fe mobility under alkaline conditions. In addition, BFKC01 can secret auxin and further improved root systems, which enhances the ability of plants to acquire Fe from soils. As a result, BFKC01-inoculated plants have more endogenous Fe and increased photosynthetic capacity under alkaline conditions as compared to control plants. Our results demonstrate the potential roles of BFKC01 in promoting Fe acquisition in plants and underline the intricate integration of microbial signaling in controlling plant Fe acquisition. (C) 2016 Elsevier Masson SAS. All rights reserved.
机译:尽管大多数地球土壤中铁(Fe)含量很高,但由于其生物利用度低,铁仍是植物生长发育的主要限制因素。随着人们日益认识到土壤微生物在植物生长中起重要作用,几种有益的根瘤菌菌株已被应用于改善植物养分吸收,生物量以及非生物或生物胁迫耐受性。在这项研究中,我们报告了微生物诱导的植物铁同化的机制,其中植物生长促进根瘤菌(PGPR)多粘芽孢杆菌BFKC01刺激植物的铁获取机制,以提高拟南芥植物中的铁吸收。机理研究表明,BFKC01转录激活铁缺乏诱导的转录因子1(FIT1),从而上调IRT1和FRO2的表达。此外,已发现BFKCO1会随着MYB72转录增加而诱导植物系统性反应,并且酚类化合物的生物合成途径也被激活。我们的数据表明,在接种BFKC01的植物的根系分泌物中检测到大量的酚类化合物,这些化合物在碱性条件下可有效促进铁的迁移。此外,BFKC01可以分泌植物生长素并进一步改善根系,从而增强植物从土壤中获取铁的能力。结果,与对照植物相比,接种BFKC01的植物在碱性条件下具有更多的内源铁和增加的光合作用能力。我们的结果证明了BFKC01在促进植物体内铁吸收中的潜在作用,并强调了微生物信号在控制植物铁吸收中的复杂整合。 (C)2016 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号