首页> 外文期刊>Plant physiology >Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model
【24h】

Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model

机译:基于体系结构的植物细胞壁力学的多尺度计算模型,以研究细胞壁网络结构模型的氢键假设

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A primary plant cell wall network was computationally modeled using the finite element approach to study the hypothesis of hemicellulose (HC) tethering with the cellulose microfibrils (CMFs) as one of the major load-bearing mechanisms of the growing cell wall. A computational primary cell wall network fragment (10 × 10 μm) comprising typical compositions and properties of CMFs and HC was modeled with well-aligned CMFs. The tethering of HC to CMFs is modeled in accordance with the strength of the hydrogen bonding by implementing a specific load-bearing connection (i.e. the joint element). The introduction of the CMF-HC interaction to the computational cell wall network model is a key to the quantitative examination of the mechanical consequences of cell wall structure models, including the tethering HC model. When the cell wall network models with and without joint elements were compared, the hydrogen bond exhibited a significant contribution to the overall stiffness of the cell wall network fragment. When the cell wall network model was stretched 1% in the transverse direction, the tethering of CMFHC via hydrogen bonds was not strong enough to maintain its integrity. When the cell wall network model was stretched 1% in the longitudinal direction, the tethering provided comparable strength to maintain its integrity. This substantial anisotropy suggests that the HC tethering with hydrogen bonds alone does not manifest sufficient energy to maintain the integrity of the cell wall during its growth (i.e. other mechanisms are present to ensure the cell wall shape).
机译:使用有限元方法对主要的植物细胞壁网络进行了建模,以研究半纤维素(HC)与纤维素微纤维(CMFs)系在一起的假设,这是生长中的细胞壁的主要承载机制之一。用良好排列的CMF对包含典型成分和CMF和HC特性的计算性主细胞壁网络片段(10×10μm)进行建模。 HC与CMF的束缚是通过实现特定的承重连接(即接头元件)来根据氢键的强度进行建模的。将CMF-HC相互作用引入计算性细胞壁网络模型是定量检查细胞壁结构模型(包括束缚HC模型)的机械后果的关键。当比较具有和没有关节单元的细胞壁网络模型时,氢键对细胞壁网络片段的整体刚度表现出显着贡献。当细胞壁网络模型在横向拉伸1%时,CMFHC通过氢键的束缚不足以保持其完整性。当细胞壁网络模型在纵向上拉伸1%时,系链提供了相当的强度以保持其完整性。这种实质性的各向异性表明,单独的带有氢键的HC束缚并没有表现出足够的能量来维持细胞壁在其生长期间的完整性(即,存在其他机制来确保细胞壁的形状)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号