首页> 外文期刊>Plant physiology >Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters.
【24h】

Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters.

机译:硅藻中的硅吸收被重新研究:饱和和不饱和吸收动力学模型以及硅转运蛋白的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

The silicic acid uptake kinetics of diatoms were studied to provide a mechanistic explanation for previous work demonstrating both nonsaturable and Michaelis-Menten-type saturable uptake. Using (68)Ge(OH)(4) as a radiotracer for Si(OH)(4), we showed a time-dependent transition from nonsaturable to saturable uptake kinetics in multiple diatom species. In cells grown under silicon (Si)-replete conditions, Si(OH)(4) uptake was initially nonsaturable but became saturable over time. Cells prestarved for Si for 24 h exhibited immediate saturable kinetics. Data suggest nonsaturability was due to surge uptake when intracellular Si pool capacity was high, and saturability occurred when equilibrium was achieved between pool capacity and cell wall silica incorporation. In Thalassiosira pseudonana at low Si(OH)(4) concentrations, uptake followed sigmoidal kinetics, indicating regulation by an allosteric mechanism. Competition of Si(OH)(4) uptake with Ge(OH)(4) suggested uptake at low Si(OH)(4) concentrations was mediated by Si transporters. At high Si(OH)(4), competition experiments and nonsaturability indicated uptake was not carrier mediated and occurred by diffusion. Zinc did not appear to be directly involved in Si(OH)(4) uptake, in contrast to a previous suggestion. A model for Si(OH)(4) uptake in diatoms is presented that proposes two control mechanisms: active transport by Si transporters at low Si(OH)(4) and diffusional transport controlled by the capacity of intracellular pools in relation to cell wall silica incorporation at high Si(OH)(4). The model integrates kinetic and equilibrium components of diatom Si(OH)(4) uptake and consistently explains results in this and previous investigations.
机译:对硅藻硅酸的吸收动力学进行了研究,为先前的工作提供了机械解释,证明了非饱和和Michaelis-Menten型的饱和吸收。使用(68)Ge(OH)(4)作为Si(OH)(4)的放射性示踪剂,我们显示了多个硅藻物种中从非饱和到饱和吸收动力学的时间依赖性转变。在充满硅(Si)的条件下生长的细胞中,Si(OH)(4)的吸收最初是不饱和的,但随着时间的流逝会变得饱和。预饥饿Si 24小时的细胞立即表现出饱和动力学。数据表明,非饱和性是由于细胞内硅池容量高时的浪涌吸收,而当池容量和细胞壁二氧化硅掺入量达到平衡时发生了饱和性。在低Si(OH)(4)浓度的拟古藻中,吸收遵循S形动力学,表明是通过变构机制调节的。 Si(OH)(4)吸收与Ge(OH)(4)的竞争表明,低Si(OH)(4)浓度下的吸收是由Si转运蛋白介导的。在高Si(OH)(4)下,竞争实验和不饱和度表明摄取不是由载体介导的,而是通过扩散发生的。与以前的建议相比,锌似乎没有直接参与Si(OH)(4)的吸收。提出了硅藻中Si(OH)(4)吸收的模型,该模型提出了两种控制机制:低Si(OH)(4)时Si转运蛋白的主动转运和受细胞内池相对于细胞壁的容量控制的扩散转运硅在高Si(OH)(4)下的掺入。该模型整合了硅藻硅(OH)(4)吸收的动力学和平衡成分,并在本次研究和以前的研究中一致地解释了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号