首页> 外文期刊>Plant Biotechnology >Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII)
【24h】

Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII)

机译:淀粉分支酶II基因(IbSBEII)的RNA干扰增加甘薯淀粉的直链淀粉含量

获取原文
获取原文并翻译 | 示例
       

摘要

In the storage roots of sweetpotato (Ipomoea batatas (L.) Lam. cv. Kokei 14), 10 to 20% of the starch is essentially unbranched linear amylose and the other major component is branched amylopectin. The starch branching enzymes, which are responsible for production of amylopectin to form alpha-l,6-linkages in the glucan can be divided into two classes, class A (e.g. potato and maize SBEII, pea SBEI) and class B (e.g. potato and maize SBEI, pea SBEII). On the bases of the registered cDNA of sweetpotatoSBEII (IbSBEII) encoding class A branching enzyme, we constructed doublestranded RNA (dsRNA) interference vectors and introduced them into sweetpotato genome via Agrobacterium-mediated gene transformation. We obtained eight independent transgenic plantsby using two kinds of RNA interference (RNAi) constructs, encoding GBSSI 1st intron-spliced RNA or a GUS fragment-spliced RNA, respectively. All transgenic plants were confirmed not to express IbSBEII by RT-PCR and to have the starch with a higher amylose content than the non-transgenic control (up to 25% compared to 10% in the control). Both constructs induced the same level of silencing of IbSBEII in all transgenic plants. The morphological characters showed no significant differences between the transgenic and control plants. Starch yield of transgenic tubers was slightly lower than that of non-transgenic tubers. The starch granules of the transgenic plants were similar to those of typical sweetpotato starchs in shape and the distribution in granule size, but slightly different in grain structure.
机译:在甘薯(Ipomoea batatas(L.)Lam。cv。Kokei 14)的储藏根中,淀粉的10%至20%本质上是直链直链淀粉,而其他主要成分是支链支链淀粉。负责支链淀粉在葡聚糖中形成α-1,6-键的淀粉支化酶可分为两类:A类(例如马铃薯和玉米SBEII,豌豆SBEI)和B类(例如马铃薯和玉米)。玉米SBEI,豌豆SBEII)。在甜薯SBEII(IbSBEII)编码的A类分支酶的注册cDNA的基础上,我们构建了双链RNA(dsRNA)干扰载体,并通过农杆菌介导的基因转化将其引入甜薯基因组。我们通过使用两种分别编码GBSSI 1st内含子剪接RNA或GUS片段剪接RNA的RNAi(RNAi)构建体获得了八株独立的转基因植物。通过RT-PCR证实所有转基因植物均不表达IbSBEII,并且具有比非转基因对照更高的直链淀粉含量的淀粉(高达25%,而对照为10%)。两种构建体均在所有转基因植物中诱导了相同水平的IbSBEII沉默。形态特征显示转基因植物和对照植物之间没有显着差异。转基因块茎的淀粉产量略低于非转基因块茎的淀粉产量。转基因植物的淀粉颗粒的形状和典型的甘薯淀粉相似,颗粒大小的分布,但颗粒结构略有不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号