...
首页> 外文期刊>Physics of plasmas >Electron magnetohydrodynamic turbulence in a high-beta plasma. II. Single point fluctuation measurements
【24h】

Electron magnetohydrodynamic turbulence in a high-beta plasma. II. Single point fluctuation measurements

机译:高β等离子体中的电子磁流体动力学湍流。二。单点波动测量

获取原文
获取原文并翻译 | 示例

摘要

A magnetic void is created by high electron pressure in a large nonuniform laboratory plasma. A strong instability is observed in regions of high pressure and magnetic field gradients. It is associated with the electron diamagnetic drift through the essentially unmagnetized ions. Its spectrum is broad and peaks near the lower hybrid frequency. The coupled fluctuations in density, electron temperature, plasma potential, and magnetic field are measured with probes and cross-correlated. The temporal correlation extends only over 1-2 oscillations. The fluctuations propagate in the direction of the electron diamagnetic drift but at the lower ion acoustic speed. In the saturated regime of the instability, the fluctuation waveforms are highly nonlinear. Density cavities with deltan similar or equal to -40% are formed with steepened density rise at the trailing edge. The associated high pressure gradient forms a diamagnetic current sheet. Positive density perturbations are smaller (deltan less than or equal to 20%), broader, and produce regions of weak magnetic fields where the electrons become nearly unmagnetized. Amplitude distributions of nonlinear density, magnetic field, and current waveforms are evaluated. The three-dimensional magnetic field fluctuations are analyzed with hodograms. The direction of the average wave vector points essentially across the mean field in the direction of the diamagnetic drift. The magnetic fluctuations can be interpreted as highly oblique electron whistlers, the density fluctuations as sound waves, but both modes are coupled in a high-beta plasma. Fluctuations in the electric and magnetic fields lead to a time-averaged electron drift, i.e., anomalous transport, across the mean field. (C) 2000 American Institute of Physics. [S1070-664X(00)03211-0]. [References: 13]
机译:在较大的不均匀实验室等离子体中,高电子压力会产生磁性空隙。在高压和磁场梯度区域中观察到强烈的不稳定性。它与通过基本未磁化的离子的电子抗磁性漂移有关。它的频谱很宽,并且在较低的混合频率附近具有峰值。密度,电子温度,等离子体电势和磁场的耦合波动是通过探头测量的,并且互相关。时间相关仅在1-2个振荡上扩展。波动沿电子反磁性漂移的方向传播,但以较低的离子声速传播。在不稳定的饱和状态下,波动波形是高度非线性的。形成具有deltan / n近似或等于-40%的密度腔,其后缘的密度上升陡峭。相关的高压梯度形成反磁性电流片。正密度扰动更小(deltan / n小于或等于20%),更宽,并产生弱磁场区域,在这些区域中,电子几乎变得不被磁化。评估非线性密度,磁场和电流波形的幅度分布。用直方图分析三维磁场波动。平均波矢量的方向基本上指向平均磁场的反磁漂移方向。磁波动可以解释为高度倾斜的电子哨子,密度波动可以解释为声波,但两种模式都在高β等离子体中耦合。电场和磁场的波动会导致平均电场上的时间平均电子漂移,即反常传输。 (C)2000美国物理研究所。 [S1070-664X(00)03211-0]。 [参考:13]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号