首页> 外文期刊>Physics of plasmas >On the control of filamentation of intense laser beams propagating in underdense plasma
【24h】

On the control of filamentation of intense laser beams propagating in underdense plasma

机译:关于在密集等离子体中传播的强激光束的灯丝控制

获取原文
获取原文并翻译 | 示例
       

摘要

In indirect drive inertial confinement fusion ignition designs, the laser energy is delivered into the hohlraum through the laser entrance holes (LEHs), which are sized as small as practicable to minimize x-ray radiation losses. On the other hand, deleterious laser plasma processes, such as filamentation and stimulated backscatter, typically increase with laser intensity. Ideally, therefore, the laser spot shape should be a close fit to the LEH, with uniform (envelope) intensity in the spot and minimal energy at larger radii spilling onto the LEH material. This keeps the laser intensity as low as possible, consistent with the area of the LEH aperture and the power requirements of the design. This can be achieved (at least for apertures significantly larger than the laser's aberrated focal spot) by the use of custom-designed phase plates. However, outfitting the 192-beam National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Tech. 26, 755 1994] laser with multiple sets of phase plates optimized for a variety of different LEH aperture sizes is an expensive proposition. It is thus important to assess the impact on laser-plasma interaction processes of using phase plates with a smaller than optimum focal spot (or even no phase plates at all!) and then defocusing the beam to expand it to fill the LEH and lower its intensity. Significant effects are found from changes in the characteristic sizes of the laser speckle, from the lack of uniformity of the laser envelope out of the focal plane and on the efficacy of additional polarization smoothing and/or smoothing by spectral dispersion (SSD). These effects are quantified with analytic estimates and simulations using PF3D, our laser-plasma interaction code. (c) 2006 American Institute of Physics.
机译:在间接驱动惯性约束聚变点火设计中,激光能量通过激光入射孔(LEHs)传递到霍尔效应腔中,其尺寸应尽可能小以最大程度地减少X射线辐射损失。另一方面,有害的激光等离子体过程,例如细丝化和受激反向散射,通常会随着激光强度的增加而增加。因此,理想情况下,激光光斑的形状应与LEH紧密匹配,光斑的强度(包络)均匀,并且在较大半径上的能量最小,并洒到LEH材料上。这样可以使激光强度尽可能低,与LEH孔的面积和设计的功率要求一致。这可以通过使用定制设计的相位板来实现(至少对于远大于激光的像差焦点的光圈而言)。然而,装备192光束的国家点火装置[J. Fusion Technology的A.Paisner,E.M.Campbell和W.J.Hogan [26,755 1994]具有针对各种不同的LEH孔径尺寸而优化的多组相位板的激光器是一项昂贵的提议。因此,重要的是评估以下情况对激光-等离子体相互作用过程的影响:使用小于最佳焦点的相位板(甚至根本没有相位板!),然后散焦光束以扩大光束以填充LEH并降低光束强度。从激光散斑的特征尺寸的变化,从焦平面以外的激光包络的缺乏均匀性以及附加的偏振平滑和/或通过光谱色散(SSD)平滑的功效中发现了显着的效果。通过使用我们的激光等离子体相互作用代码PF3D进行分析估计和模拟,可以量化这些影响。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号