首页> 外文期刊>Physics of plasmas >Emittance growth due to radial density variations of an emittance-dominated electron beam in a channel with continuous acceleration and focusing
【24h】

Emittance growth due to radial density variations of an emittance-dominated electron beam in a channel with continuous acceleration and focusing

机译:在连续加速和聚焦的情况下,由发射为主的电子束在通道中的径向密度变化导致的发射率增长

获取原文
获取原文并翻译 | 示例
           

摘要

Simulations have identified charge-density variations as driving the dominant emittance growth mechanism for high-current, low-emittance induction linacs using solenoidal focusing, once the beam enters the emittance-dominated regime. In this paper, we use the radial equation of motion, including the nonlinearities resulting from radial density variations, to understand this effect. Nonlinearities in the beam's radial motion while in a solenoid arise from the noncancellation of the effects from the diamagnetic axial magnetic field and the potential depression of the beam, if the beam density is nonuniform. Any initial density variation drives a logarithmic increase in additional higher-order density variations (through the differential betatron motion), and an emittance growth that scales logarithmically, or greater (even potentially faster than linear), with the axial distance along the accelerator. The growth rate depends on the beam current, the focusing force, and the accelerating gradient, and for typical machine parameters, the growth rate can be faster than linear with distance. The magnitude of the emittance growth depends critically on the matching of the beam from the injector to the beamline. This formalism leads to a criterion of how uniform the beam density has to be and how well the beam needs to be matched in order not to have an unacceptable emittance growth. (C) 1998 American Institute of Physics. [References: 14]
机译:仿真已经确定了电荷密度变化,一旦光束进入了以发射率为主的状态,就可以利用螺线管聚焦来驱动大电流,低发射率直线加速器的主要发射率增长机制。在本文中,我们使用径向运动方程式(包括由径向密度变化引起的非线性)来了解这种效果。如果光束密度不均匀,则在电磁线圈中时光束径向运动的非线性是由于抗磁轴向磁场的影响和光束的电位下降而无法取消所致。任何初始密度变化都会导致其他更高阶密度变化的对数增加(通过差分倍速加速器运动),并且随着沿着加速器的轴向距离,发射率的增长将呈对数缩放或更大(甚至可能比线性更快)的发射率增长。增长率取决于束电流,聚焦力和加速梯度,对于典型的机器参数,增长率随距离的变化可能快于线性。发射率增长的幅度主要取决于从注入器到光束线的光束的匹配度。这种形式主义导致了一个标准,即光束密度必须多么均匀,以及光束需要匹配的程度才能不具有不可接受的发射率增长。 (C)1998美国物理研究所。 [参考:14]

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号