首页> 外文期刊>Wireless Sensor Systems, IET >Sub-optimum fast Bayesian techniques for joint leak detection and localisation
【24h】

Sub-optimum fast Bayesian techniques for joint leak detection and localisation

机译:次最佳快速贝叶斯技术,用于联合泄漏检测和定位

获取原文
获取原文并翻译 | 示例

摘要

A fast tree-search algorithm for joint leak detection and localisation using surface-borne ultrasonic acoustic signals is developed through a wireless sensor network. Owing to environmental noise and multipath fading of ultrasonic signals, false sensor observations are frequent in the observation data. The problem is modelled as a Bayesian inference model and the maximum a posteriori solution is approximated through a tree-search structure. The algorithm initially divides the area into large cells and approximates the observation likelihood function over these large cells. In a tree structure, a large cell with high likelihood is divided into smaller cells and the tree is expanded until the required estimation precision is obtained. Simulation and experimental results reveal advantages of the proposed technique in terms of estimation error and convergence speed in comparison with other conventional Bayesian techniques such as particle filtering.
机译:通过无线传感器网络,开发了一种使用表面传播的超声波信号进行联合泄漏检测和定位的快速树搜索算法。由于环境噪声和超声信号的多径衰减,在观测数据中经常出现错误的传感器观测。该问题被建模为贝叶斯推断模型,并且通过树搜索结构来近似最大后验解。该算法最初将区域划分为大单元,并在这些大单元上近似观察似然函数。在树结构中,将具有高似然性的大像元划分为较小的像元,并扩展树,直到获得所需的估计精度为止。仿真和实验结果表明,与其他传统的贝叶斯技术(例如粒子滤波)相比,该技术在估计误差和收敛速度方面具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号