首页> 外文期刊>Wireless Networks >An enhanced wireless sensor network localization scheme for radio irregularity models using hybrid fuzzy deep extreme learning machines
【24h】

An enhanced wireless sensor network localization scheme for radio irregularity models using hybrid fuzzy deep extreme learning machines

机译:使用混合模糊深度极限学习机的无线电不规则模型的增强型无线传感器网络定位方案

获取原文
获取原文并翻译 | 示例

摘要

Localization is one of the key challenges facing wireless sensor networks (WSNs), particularly in the absence of global positioning equipment such as GPS. However, equipping WSNs with GPS sensors entails the additional costs of hardware logic and increased power consumption, thereby lowering the lifetime of the sensor, which is normally operated on a non-rechargeable battery. Range-free-based localization schemes have shown promise compared to range-based approaches as preferred and cost-effective solutions. Typical range-free localization algorithms have a key advantage: simplicity. However, their precision must be improved, especially under varying node densities, sensing coverage conditions, and topology diversity. Thus, this work investigates the probable integration of two soft-computing techniques, namely, Fuzzy Logic (FL) and Extreme Learning Machines (ELMs), with the goal of enhancing the approximate localization precision while considering the above factors. In stark contrast to ELMs, FL methods yield high accuracy under low node density and limited coverage conditions. In addition, as a hybrid scheme, extra steps are integrated to compensate for the effects of irregular topology (i.e., noisy signal density due to obstacles). Signal and weight are normalized during the fuzzy states, while the ELM uses a deep learning concept to adjust the signal coverage, including the spring force error estimation enhancement. The performance of our hybrid scheme is evaluated via simulations that demonstrate the scheme's effectiveness compared with other soft-computing-based range-free localization schemes.
机译:本地化是无线传感器网络(WSN)面临的主要挑战之一,尤其是在缺少GPS等全球定位设备的情况下。但是,为WSN配备GPS传感器会带来硬件逻辑的额外成本和功耗的增加,从而降低了传感器的使用寿命,该传感器通常使用不可充电的电池供电。与基于范围的方法相比,基于范围的本地化方案已显示出希望,是首选且具有成本效益的解决方案。典型的无范围定位算法具有一个关键优势:简单。但是,必须提高其精度,尤其是在节点密度变化,检测覆盖条件和拓扑多样性的情况下。因此,这项工作研究了两种软计算技术(即模糊逻辑(FL)和极限学习机(ELM))的可能集成,目的是在考虑上述因素的同时提高近似定位精度。与ELM形成鲜明对比的是,FL方法在低节点密度和有限覆盖条件下可产生高精度。另外,作为一种混合方案,集成了额外的步骤以补偿不规则拓扑的影响(即,由于障碍物引起的噪声信号密度)。在模糊状态下将信号和权重归一化,而ELM使用深度学习概念来调整信号覆盖范围,包括弹簧力误差估计增强。我们的混合方案的性能是通过仿真评估的,该仿真证明了该方案与其他基于软计算的无范围定位方案相比的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号