首页> 外文期刊>Wireless Networks >Optimization of adaptive antenna system parameters in self-organizing LTE networks
【24h】

Optimization of adaptive antenna system parameters in self-organizing LTE networks

机译:自组织LTE网络中自适应天线系统参数的优化

获取原文
获取原文并翻译 | 示例

摘要

In wireless communications the demand for wide range of services is leading to a rapid increase in network performance requirements. Hence, today’s cellular radio technologies are designed to operate closer to Shannon capacity bound which sets the ultimate upper limit for the wireless channel capacity. Yet, good link level performance does not necessarily mean that network resources are used efficiently as the cellular capacity and coverage performance may not be optimal resulting from dynamic conditions in radio network environment such as urbanization, insertion or deletion of base stations, and malfunctioning nodes. Due to the fact that reacting on those inherent problems manually is very expensive and time consuming, automated optimization of cellular coverage and capacity by means of self-optimization of adaptive antenna system parameters could be an attractive solution from the network operator’s point of view. Furthermore, suboptimal antenna parameter selection in long term evolution (LTE) network planning or the reuse of the sites and antenna parameters of a preceding access technology requires optimization of adaptive antenna system parameters. In this article we propose a novel centralized self-optimization approach that can be used for adapting antenna system parameters in order to automatically control network capacity and coverage in a macro-cellular deployment. In the proposed approach we present case-based reasoning (CBR) based self-optimization aided by an exemplary rule-based scheme which is required during the training phase of CBR. Dynamic system level downlink simulator is developed to validate the performance of the proposed approach in a realistic macro-cellular scenario. In performance evaluations the 3rd generation partnership project LTE system framework is assumed and propagation is modeled in three dimensions.
机译:在无线通信中,对广泛服务的需求导致网络性能要求的迅速提高。因此,当今的蜂窝无线电技术旨在在更接近Shannon容量界限的条件下运行,从而为无线信道容量设定了最终上限。然而,良好的链路级性能并不一定意味着网络资源会得到有效利用,因为蜂窝容量和覆盖范围性能可能不是由无线网络环境中的动态条件(例如城市化,基站的插入或删除以及节点故障)导致的最佳状态。由于手动解决这些固有问题非常昂贵且耗时,因此,从网络运营商的角度来看,通过自适应天线系统参数的自我优化来自动优化蜂窝覆盖范围和容量可能是一个有吸引力的解决方案。此外,长期演进(LTE)网络规划中的次优天线参数选择或先前接入技术的站点和天线参数的重用要求优化自适应天线系统参数。在本文中,我们提出了一种新颖的集中式自优化方法,该方法可用于调整天线系统参数,以便在宏蜂窝部署中自动控制网络容量和覆盖范围。在提出的方法中,我们提出了基于案例推理(CBR)的自我优化,并辅以在CBR训练阶段所需的基于规则的示例性方案。开发了动态系统级下行链路模拟器,以验证所提出方法在实际宏蜂窝场景中的性能。在性能评估中,假设了第三代合作伙伴计划LTE系统框架,并且在三个维度上对传播进行了建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号