首页> 外文期刊>Wireless Communications Letters, IEEE >CV-3DCNN: Complex-Valued Deep Learning for CSI Prediction in FDD Massive MIMO Systems
【24h】

CV-3DCNN: Complex-Valued Deep Learning for CSI Prediction in FDD Massive MIMO Systems

机译:CV-3DCNN:FDD大规模MIMO系统中CSI预测复合深度学习

获取原文
获取原文并翻译 | 示例

摘要

In beyond fifth-generation (B5G) era, massive multiple-input multiple-output (M-MIMO) will be a key technology to offer higher network capacities. Due to the different frequency of uplink and downlink channels in FDD systems, the channel state information (CSI) feedback from user terminal to the base station is necessary, but this reduces the spectrum efficiency. This letter proposes a deep learning based solution to predict the downlink CSI in frequency division duplex (FDD) systems, which is termed as complex-valued three dimensional convolutional neural network (CV-3DCNN). The proposed network uses a complex-valued neural network in complex domain to deal with the complex CSI matrices, and adopts three-dimensional convolution operations for feature extraction. The proposed scheme aims to make full use of the hidden information of the complex matrices of the CSI data, and to minimize information loss caused by data processing. The experimental results demonstrate that the proposed architecture can improve accuracy of the downlink CSI prediction by approximately 6 dB.
机译:在超出第五代(B5G)时代,大量多输入多输出(M-MIMO)将是提供更高网络容量的关键技术。由于FDD系统中的上行链路和下行链路通道的不同频率,需要从用户终端到基站的信道状态信息(CSI)是必要的,但这降低了频谱效率。这封信提出了基于深度学习的解决方案,以预测频分双工(FDD)系统中的下行链路CSI,其被称为复值三维卷积神经网络(CV-3DCNN)。所提出的网络在复杂的域中使用复值神经网络来处理复杂的CSI矩阵,并采用三维卷积操作进行特征提取。该方案旨在充分利用CSI数据的复杂矩阵的隐藏信息,并最大限度地减少由数据处理引起的信息丢失。实验结果表明,所提出的架构可以提高下行链路CSI预测的准确性大约6dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号