首页> 外文期刊>IEEE transactions on wireless communications >LDPC Code Design for the Two-User Gaussian Multiple Access Channel
【24h】

LDPC Code Design for the Two-User Gaussian Multiple Access Channel

机译:两用户高斯多路访问信道的LDPC代码设计

获取原文
获取原文并翻译 | 示例

摘要

We study code design for two-user Gaussian multiple access channels (GMACs) under fixed channel gains and under quasi-static fading. We employ low-density parity-check (LDPC) codes with BPSK modulation and utilize an iterative joint decoder. Adopting a belief propagation (BP) algorithm, we derive the PDF of the log-likelihood-ratios (LLRs) fed to the component LDPC decoders. Via examples, it is illustrated that the characterized PDF resembles a Gaussian mixture (GM) distribution, which is exploited in predicting the decoding performance of LDPC codes over GMACs. Based on the GM assumption, we propose variants of existing analysis methods, named modified density evolution (DE) and modified extrinsic information transfer (EXIT). We derive a stability condition on the degree distributions of the LDPC code ensembles and utilize it in the code optimization. Under fixed channel gains, the newly optimized codes are shown to perform close to the capacity region boundary outperforming the existing designs and the off-the-shelf point-to-point (P2P) codes. Under quasi-static fading, optimized codes exhibit consistent improvements upon the P2P codes as well. Finite block length simulations of specific codes picked from the designed ensembles are also carried out and it is shown that optimized codes perform close to the outage limits.
机译:我们研究固定信道增益和准静态衰落下两用户高斯多路访问信道(GMAC)的代码设计。我们使用具有BPSK调制的低密度奇偶校验(LDPC)码,并使用迭代联合解码器。通过采用置信传播(BP)算法,我们导出了馈入组件LDPC解码器的对数似然比(LLR)的PDF。通过示例说明,特征化的PDF类似于高斯混合(GM)分布,可用于预测GMAC上LDPC码的解码性能。基于GM的假设,我们提出了现有分析方法的变体,分别称为改进的密度演化(DE)和改进的外部信息传递(EXIT)。我们根据LDPC码集合的度数分布推导了稳定性条件,并将其用于代码优化。在固定的信道增益下,新优化的代码显示出接近容量区域边界的性能,胜过现有设计和现成的点对点(P2P)代码。在准静态衰落下,优化的代码也表现出对P2P代码的持续改进。还对从设计的集成中选取的特定代码进行了有限的块长度模拟,结果表明,优化的代码的性能接近中断极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号